Lossless Reduced Cutset Coding of Markov Random Fields

M. Reyes, D. Neuhoff
{"title":"Lossless Reduced Cutset Coding of Markov Random Fields","authors":"M. Reyes, D. Neuhoff","doi":"10.1109/DCC.2010.41","DOIUrl":null,"url":null,"abstract":"This paper presents Reduced Cutset Coding, a new Arithmetic Coding (AC) based approach tolossless compression of Markov random fields. In recent work\\cite{reye:09a}, the authors presented an efficient AC based approachto encoding acyclic MRFs and described a Local Conditioning (LC)based approach to encoding cyclic MRFs. In the present work, weintroduce an algorithm for AC encoding of a cyclic MRF for which thecomplexity of the LC method of \\cite{reye:09a}, or the acyclicMRF algorithm of \\cite{reye:09a} combined with the Junction Tree(JT) algorithm, is too large. For encoding an MRF based on acyclic graph $G=(V,E)$, a cutset $U\\subset V$ is selected such thatthe subgraph $G_U$ induced by $U$, and each of the components of$G\\setminus U$, are tractable to either LC or JT. Then, the cutsetvariables $X_U$ are AC encoded with coding distributions based on areduced MRF defined on $G_U$, and the remaining components$X_{V\\setminus U}$ of $X_V$ are optimally AC encoded conditioned on$X_U$. The increase in rate over optimal encoding of $X_V$ is thenormalized divergence between the marginal distribution of $X_U$ and thereduced MRF on $G_U$ used for the AC encoding. We show this follows aPythagorean decomposition and, additionally, that the optimalexponential parameter for the reduced MRF on $G_U$ is the one thatpreserves the moments from the marginal distribution. We also showthat the rate of encoding $X_U$ with this moment-matchingexponential parameter is equal to the entropy of the reduced MRFwith this moment-matching parameter. We illustrate the concepts ofour approach by encoding a typical image from an Ising model with acutset consisting of evenly spaced rows. The performance on this image issimilar to that of JBIG.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents Reduced Cutset Coding, a new Arithmetic Coding (AC) based approach tolossless compression of Markov random fields. In recent work\cite{reye:09a}, the authors presented an efficient AC based approachto encoding acyclic MRFs and described a Local Conditioning (LC)based approach to encoding cyclic MRFs. In the present work, weintroduce an algorithm for AC encoding of a cyclic MRF for which thecomplexity of the LC method of \cite{reye:09a}, or the acyclicMRF algorithm of \cite{reye:09a} combined with the Junction Tree(JT) algorithm, is too large. For encoding an MRF based on acyclic graph $G=(V,E)$, a cutset $U\subset V$ is selected such thatthe subgraph $G_U$ induced by $U$, and each of the components of$G\setminus U$, are tractable to either LC or JT. Then, the cutsetvariables $X_U$ are AC encoded with coding distributions based on areduced MRF defined on $G_U$, and the remaining components$X_{V\setminus U}$ of $X_V$ are optimally AC encoded conditioned on$X_U$. The increase in rate over optimal encoding of $X_V$ is thenormalized divergence between the marginal distribution of $X_U$ and thereduced MRF on $G_U$ used for the AC encoding. We show this follows aPythagorean decomposition and, additionally, that the optimalexponential parameter for the reduced MRF on $G_U$ is the one thatpreserves the moments from the marginal distribution. We also showthat the rate of encoding $X_U$ with this moment-matchingexponential parameter is equal to the entropy of the reduced MRFwith this moment-matching parameter. We illustrate the concepts ofour approach by encoding a typical image from an Ising model with acutset consisting of evenly spaced rows. The performance on this image issimilar to that of JBIG.
马尔可夫随机场的无损约割集编码
本文提出了一种新的基于算术编码(AC)的马尔可夫随机场无损压缩方法——缩减割集编码。在最近的工作\cite{reye:09a}中,作者提出了一种高效的基于交流的编码非循环mrf的方法,并描述了一种基于局部条件作用(LC)的编码循环mrf的方法。在目前的工作中,我们介绍了一种循环MRF的AC编码算法,其中LC方法\cite{reye:09a}或结合连接树(JT)算法的acyclicMRF算法\cite{reye:09a}的复杂性太大。为了编码基于无循环图$G=(V,E)$的MRF,选择了一个割集$U\subset V$,使得由$U$引起的子图$G_U$和$G\setminus U$的每个组件对LC或JT都是可处理的。然后,cutsetvariables $X_U$使用基于$G_U$上定义的减少MRF的编码分布进行交流编码,而$X_V$的其余组件$X_{V\setminus U}$则以$X_U$为条件进行最佳交流编码。在最优编码$X_V$上的速率增加是$X_U$的边际分布和用于AC编码的$G_U$上的减少的MRF之间的归一化分歧。我们表明,这遵循了毕达哥拉斯分解,此外,在$G_U$上,简化的MRF的最佳指数参数是保留来自边际分布的矩的参数。我们还证明了使用此矩匹配指数参数编码$X_U$的速率等于使用此矩匹配参数简化的mrf的熵。我们通过对来自Ising模型的典型图像进行编码来说明我们方法的概念,该图像具有由均匀间隔的行组成的acutset。该图像的性能与JBIG相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信