Child's Body Part Tracking Simulates Babysitter Vision Robot

Hanan Aljuaid, D. Mohamad
{"title":"Child's Body Part Tracking Simulates Babysitter Vision Robot","authors":"Hanan Aljuaid, D. Mohamad","doi":"10.1109/ICITCS.2013.6717812","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to explore novel algorithms to track a child-object in an indoor and outdoor background video. It focuses on tracking a whole child-object while simultaneously tracking the body parts of that object to produce a positive system. This effort suggests an approach for labeling three body sections, i.e., the head, upper, and lower sections, and then for detecting a specific area within the three sections, and tracking this section using a Gaussian mixture model (GMM) algorithm according to the labeling technique. The system is applied in three situations: child-object walking, crawling, and seated moving. During system experimentation, walking object tracking provided the best performance, achieving 91.932% for body-part tracking and 96.235% for whole-object tracking. Crawling object tracking achieved 90.832% for body-part tracking and 96.231% for whole- object tracking. Finally, seated-moving-object tracking achieved 89.7% for body-part tracking and 93.4% for whole-object tracking.","PeriodicalId":420227,"journal":{"name":"2013 International Conference on IT Convergence and Security (ICITCS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on IT Convergence and Security (ICITCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITCS.2013.6717812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this paper is to explore novel algorithms to track a child-object in an indoor and outdoor background video. It focuses on tracking a whole child-object while simultaneously tracking the body parts of that object to produce a positive system. This effort suggests an approach for labeling three body sections, i.e., the head, upper, and lower sections, and then for detecting a specific area within the three sections, and tracking this section using a Gaussian mixture model (GMM) algorithm according to the labeling technique. The system is applied in three situations: child-object walking, crawling, and seated moving. During system experimentation, walking object tracking provided the best performance, achieving 91.932% for body-part tracking and 96.235% for whole-object tracking. Crawling object tracking achieved 90.832% for body-part tracking and 96.231% for whole- object tracking. Finally, seated-moving-object tracking achieved 89.7% for body-part tracking and 93.4% for whole-object tracking.
儿童身体部位跟踪模拟保姆视觉机器人
本文的目的是探索一种新的算法来跟踪室内和室外背景视频中的子目标。它专注于跟踪整个子对象,同时跟踪该对象的身体部分,以产生一个积极的系统。这项工作提出了一种标记三个身体部分的方法,即头部,上部和下部部分,然后检测三个部分中的特定区域,并根据标记技术使用高斯混合模型(GMM)算法跟踪该部分。该系统应用于三种情况:儿童物体行走,爬行和坐姿移动。在系统实验中,步行目标跟踪的性能最好,身体部分跟踪率达到91.932%,全目标跟踪率达到96.235%。爬行目标跟踪对身体部分的跟踪率为90.832%,对整个目标的跟踪率为96.231%。最后,座椅运动目标跟踪的身体部分跟踪率为89.7%,整个目标跟踪率为93.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信