Towards Fixation Prediction: A Nonparametric Estimation-Based Approach through Key-Points

Saulo A. F. Oliveira, A. Neto, J. Gomes
{"title":"Towards Fixation Prediction: A Nonparametric Estimation-Based Approach through Key-Points","authors":"Saulo A. F. Oliveira, A. Neto, J. Gomes","doi":"10.1109/BRACIS.2016.077","DOIUrl":null,"url":null,"abstract":"When we look at our environment, we primarily pay attention to visually distinctive objects. Saliency maps are topographical maps of the visually salient parts of scenes in which such visually distinctive objects, henceforth called visually important or salient, can be easily highlighted. Computing these maps is still an open problem whose interest is growing in computer vision. Thus, in this work, we propose a new method to compute these maps based on salient points extracted through local descriptors. After, a nonparametric kernel density estimation method is employed to estimate the final saliency map. In order to assess the performance, we carry out experiments on two large benchmark databases to demonstrate the proposed method performance against the state-of-the-art methods using different scoring metrics. Due to the experimental results obtained, we consider the proposed method is a valid alternative for saliency detection.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When we look at our environment, we primarily pay attention to visually distinctive objects. Saliency maps are topographical maps of the visually salient parts of scenes in which such visually distinctive objects, henceforth called visually important or salient, can be easily highlighted. Computing these maps is still an open problem whose interest is growing in computer vision. Thus, in this work, we propose a new method to compute these maps based on salient points extracted through local descriptors. After, a nonparametric kernel density estimation method is employed to estimate the final saliency map. In order to assess the performance, we carry out experiments on two large benchmark databases to demonstrate the proposed method performance against the state-of-the-art methods using different scoring metrics. Due to the experimental results obtained, we consider the proposed method is a valid alternative for saliency detection.
注视预测:基于关键点的非参数估计方法
当我们观察我们的环境时,我们主要关注视觉上独特的物体。显著性地图是场景中视觉上显著部分的地形图,在这些地形图中,这些视觉上显著的物体,因此被称为视觉上重要或显著的物体,可以很容易地突出显示出来。计算这些地图仍然是一个悬而未决的问题,人们对计算机视觉的兴趣正在增长。因此,在这项工作中,我们提出了一种基于局部描述符提取的突出点计算这些地图的新方法。然后,采用非参数核密度估计方法估计最终的显著性图。为了评估性能,我们在两个大型基准数据库上进行了实验,以使用不同的评分指标来演示所提出的方法与最先进的方法的性能。根据实验结果,我们认为该方法是一种有效的显著性检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信