{"title":"Learning English to Chinese Character: Calligraphic Art Production based on Transformer","authors":"Yifan Jin, Yi Zhang, Xi Yang","doi":"10.1145/3476124.3488642","DOIUrl":null,"url":null,"abstract":"We propose a transformer-based model to learn Square Word Calligraphy to write English words in the format of a square that resembles Chinese characters. To achieve this task, we compose a dataset by collecting the calligraphic characters created by artist Xu Bing, and labeling the position of each alphabet in the characters. Taking the input of English alphabets, we introduce a modified transformer-based model to learn the position relationship between each alphabet and predict the transformation parameters for each part to reassemble them as a Chinese character. We show the comparison results between our predicted characters and corresponding characters created by the artist to indicate our proposed model has a good performance on this task, and we also created new characters to show the “creativity” of our model.","PeriodicalId":199099,"journal":{"name":"SIGGRAPH Asia 2021 Posters","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2021 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476124.3488642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a transformer-based model to learn Square Word Calligraphy to write English words in the format of a square that resembles Chinese characters. To achieve this task, we compose a dataset by collecting the calligraphic characters created by artist Xu Bing, and labeling the position of each alphabet in the characters. Taking the input of English alphabets, we introduce a modified transformer-based model to learn the position relationship between each alphabet and predict the transformation parameters for each part to reassemble them as a Chinese character. We show the comparison results between our predicted characters and corresponding characters created by the artist to indicate our proposed model has a good performance on this task, and we also created new characters to show the “creativity” of our model.