mobile YOLACT: Toward Lightweight Instance Segmentation for Mobile Devices

Juwon Lee, Seungjae Lee, Jong-gook Ko
{"title":"mobile YOLACT: Toward Lightweight Instance Segmentation for Mobile Devices","authors":"Juwon Lee, Seungjae Lee, Jong-gook Ko","doi":"10.1109/ICTC52510.2021.9621125","DOIUrl":null,"url":null,"abstract":"In this paper, we present a lightweight instance segmentation model, mobileYOLACT which is designed for mobile environments where the computational resources are limited. We propose several modifications to YOLACT to improve computational efficiency. First, we use a quantized lightweight backbone for feature extraction. Second, we reduce the computational burden with marginal degradation in accuracy by employing the depthwise separable convolution on the entire model. Third, we simplified the structure of prototype mask generation branch. Last, we used TorchScript and NCNN to further optimize the model and deploy it on mobile device. We validate the effectiveness of the proposed method from the experiments on COCO dataset. The proposed model can run at the speed of 21 FPS on Samsung Galaxy S20 with 23 APmask at 0.5 IoU threshold.","PeriodicalId":299175,"journal":{"name":"2021 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC52510.2021.9621125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a lightweight instance segmentation model, mobileYOLACT which is designed for mobile environments where the computational resources are limited. We propose several modifications to YOLACT to improve computational efficiency. First, we use a quantized lightweight backbone for feature extraction. Second, we reduce the computational burden with marginal degradation in accuracy by employing the depthwise separable convolution on the entire model. Third, we simplified the structure of prototype mask generation branch. Last, we used TorchScript and NCNN to further optimize the model and deploy it on mobile device. We validate the effectiveness of the proposed method from the experiments on COCO dataset. The proposed model can run at the speed of 21 FPS on Samsung Galaxy S20 with 23 APmask at 0.5 IoU threshold.
移动YOLACT:面向移动设备的轻量级实例分割
本文提出了一种轻量级的实例分割模型mobileYOLACT,该模型是为计算资源有限的移动环境而设计的。为了提高计算效率,我们对YOLACT进行了一些修改。首先,我们使用量化的轻量级主干进行特征提取。其次,我们通过在整个模型上使用深度可分离卷积来减少计算量和精度的边际下降。第三,简化了原型掩码生成分支的结构。最后,我们使用TorchScript和NCNN对模型进行进一步优化,并将其部署到移动设备上。通过COCO数据集的实验验证了该方法的有效性。该模型可以在三星Galaxy S20上以每秒21帧的速度运行,APmask为23,阈值为0.5 IoU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信