Sizeless

Simon Eismann, Long Bui, Johannes Grohmann, C. Abad, N. Herbst, Samuel Kounev
{"title":"Sizeless","authors":"Simon Eismann, Long Bui, Johannes Grohmann, C. Abad, N. Herbst, Samuel Kounev","doi":"10.1145/3464298.3493398","DOIUrl":null,"url":null,"abstract":"Serverless functions are an emerging cloud computing paradigm that is being rapidly adopted by both industry and academia. In this cloud computing model, the provider opaquely handles resource management tasks such as resource provisioning, deployment, and auto-scaling. The only resource management task that developers are still in charge of is selecting how much resources are allocated to each worker instance. However, selecting the optimal size of serverless functions is quite challenging, so developers often neglect it despite its significant cost and performance benefits. Existing approaches aiming to automate serverless functions resource sizing require dedicated performance tests, which are time-consuming to implement and maintain. In this paper, we introduce an approach to predict the optimal resource size of a serverless function using monitoring data from a single resource size. As our approach does not require dedicated performance tests, it enables cloud providers to implement resource sizing on a platform level and automate the last resource management task associated with serverless functions. We evaluate our approach on four different serverless applications on AWS, where it predicts the execution time of the other memory sizes based on monitoring data for a single memory size with an average prediction error of 15.3%. Based on these predictions, it selects the optimal memory size for 79.0% of the serverless functions and the second-best memory size for 12.3% of the serverless functions, which results in an average speedup of 39.7% while also decreasing average costs by 2.6%.","PeriodicalId":154994,"journal":{"name":"Proceedings of the 22nd International Middleware Conference","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Middleware Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3464298.3493398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

Serverless functions are an emerging cloud computing paradigm that is being rapidly adopted by both industry and academia. In this cloud computing model, the provider opaquely handles resource management tasks such as resource provisioning, deployment, and auto-scaling. The only resource management task that developers are still in charge of is selecting how much resources are allocated to each worker instance. However, selecting the optimal size of serverless functions is quite challenging, so developers often neglect it despite its significant cost and performance benefits. Existing approaches aiming to automate serverless functions resource sizing require dedicated performance tests, which are time-consuming to implement and maintain. In this paper, we introduce an approach to predict the optimal resource size of a serverless function using monitoring data from a single resource size. As our approach does not require dedicated performance tests, it enables cloud providers to implement resource sizing on a platform level and automate the last resource management task associated with serverless functions. We evaluate our approach on four different serverless applications on AWS, where it predicts the execution time of the other memory sizes based on monitoring data for a single memory size with an average prediction error of 15.3%. Based on these predictions, it selects the optimal memory size for 79.0% of the serverless functions and the second-best memory size for 12.3% of the serverless functions, which results in an average speedup of 39.7% while also decreasing average costs by 2.6%.
体积
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信