Can probability theory really help tame problems in mathematical hydrodynamics?

Martina Hofmanov'a, F. Bechtold
{"title":"Can probability theory really help tame problems in mathematical hydrodynamics?","authors":"Martina Hofmanov'a, F. Bechtold","doi":"10.1515/dmvm-2022-0077","DOIUrl":null,"url":null,"abstract":"Recent years have seen spectacular progress in the mathematical study of hydrodynamic equations. Novel tools from convex integration in particular prove extremely versatile in establishing non-uniqueness results. Motivated by this 'pathological' behavior of solutions in the deterministic setting, stochastic models of fluid dynamics have enjoyed growing interest from the mathematical community. Inspired by the theory of 'regularization by noise', it is hoped for that stochasticity might help avoid 'pathologies' such as non-uniqueness of weak solutions. Current research however shows that convex integration methods can prevail even in spite of random perturbations.","PeriodicalId":180461,"journal":{"name":"Mitteilungen der Deutschen Mathematiker-Vereinigung","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitteilungen der Deutschen Mathematiker-Vereinigung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dmvm-2022-0077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recent years have seen spectacular progress in the mathematical study of hydrodynamic equations. Novel tools from convex integration in particular prove extremely versatile in establishing non-uniqueness results. Motivated by this 'pathological' behavior of solutions in the deterministic setting, stochastic models of fluid dynamics have enjoyed growing interest from the mathematical community. Inspired by the theory of 'regularization by noise', it is hoped for that stochasticity might help avoid 'pathologies' such as non-uniqueness of weak solutions. Current research however shows that convex integration methods can prevail even in spite of random perturbations.
概率论真的能帮助解决数学流体力学中的问题吗?
近年来,水动力方程的数学研究取得了惊人的进展。来自凸积分的新工具在建立非唯一性结果方面被证明是非常通用的。由于确定性环境下解的这种“病态”行为,流体动力学的随机模型受到了数学界越来越多的关注。受“噪声正则化”理论的启发,人们希望随机性可以帮助避免“病态”,比如弱解的非唯一性。然而,目前的研究表明,凸积分方法即使在随机扰动下也能占上风。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信