B-DRRN: A Block Information Constrained Deep Recursive Residual Network for Video Compression Artifacts Reduction

Hoang Man Trinh, Jinjia Zhou
{"title":"B-DRRN: A Block Information Constrained Deep Recursive Residual Network for Video Compression Artifacts Reduction","authors":"Hoang Man Trinh, Jinjia Zhou","doi":"10.1109/PCS48520.2019.8954521","DOIUrl":null,"url":null,"abstract":"Although the video compression ratio nowadays becomes higher, the video coders such as H.264/AVC, H.265/HEVC, H.266/VVC always suffer from the video artifacts. In this paper, we design a neural network to enhance the quality of the compressed frame by leveraging the block information, called B-DRRN (Deep Recursive Residual Network with Block information). Firstly, an extra network branch is designed for leveraging the block information of the coding unit (CU). Moreover, to avoid a great increase in the network size, Recursive Residual structure and sharing weight techniques are applied. We also conduct a new large-scale dataset with 209,152 training samples. Experimental results show that the proposed B-DRRN can reduce 6.16% BD-rate compared to HEVC standard. After efficiently adding an extra network branch, this work can improve the performance of the main network without increasing any memory for storing.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Although the video compression ratio nowadays becomes higher, the video coders such as H.264/AVC, H.265/HEVC, H.266/VVC always suffer from the video artifacts. In this paper, we design a neural network to enhance the quality of the compressed frame by leveraging the block information, called B-DRRN (Deep Recursive Residual Network with Block information). Firstly, an extra network branch is designed for leveraging the block information of the coding unit (CU). Moreover, to avoid a great increase in the network size, Recursive Residual structure and sharing weight techniques are applied. We also conduct a new large-scale dataset with 209,152 training samples. Experimental results show that the proposed B-DRRN can reduce 6.16% BD-rate compared to HEVC standard. After efficiently adding an extra network branch, this work can improve the performance of the main network without increasing any memory for storing.
B-DRRN:一种基于块信息约束的深度递归残差网络
虽然目前视频压缩比越来越高,但H.264/AVC、H.265/HEVC、H.266/VVC等视频编码器都存在视频伪影问题。在本文中,我们设计了一个神经网络,利用块信息来提高压缩帧的质量,称为B-DRRN(深度递归残差网络与块信息)。首先,设计了一个额外的网络分支来利用编码单元(CU)的块信息。此外,为了避免网络规模的大幅增加,采用了递归残差结构和共享权值技术。我们还进行了一个新的大规模数据集,其中包含209,152个训练样本。实验结果表明,与HEVC标准相比,所提出的B-DRRN可降低6.16%的bd率。在有效地增加一个额外的网络分支后,这项工作可以在不增加任何存储内存的情况下提高主网络的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信