Traveling Wave Solutions and Chaotic Motions for a Perturbed Nonlinear Schrödinger Equation with Power-Law Nonlinearity and Higher-Order Dispersions

Mati Youssoufa, O. Dafounansou, Camus Gaston Latchio Tiofack, A. Mohamadou
{"title":"Traveling Wave Solutions and Chaotic Motions for a Perturbed Nonlinear Schrödinger Equation with Power-Law Nonlinearity and Higher-Order Dispersions","authors":"Mati Youssoufa, O. Dafounansou, Camus Gaston Latchio Tiofack, A. Mohamadou","doi":"10.5772/intechopen.100396","DOIUrl":null,"url":null,"abstract":"This chapter aims to study and solve the perturbed nonlinear Schrödinger (NLS) equation with the power-law nonlinearity in a nano-optical fiber, based upon different methods such as the auxiliary equation method, the Stuart and DiPrima’s stability analysis method, and the bifurcation theory. The existence of the traveling wave solutions is discussed, and their stability properties are investigated through the modulational stability gain spectra. Moreover, the development of the chaotic motions for the systems is pointed out via the bifurcation theory. Taking into account an external periodic perturbation, we have analyzed the chaotic behavior of traveling waves through quasiperiodic route to chaos.","PeriodicalId":184064,"journal":{"name":"The Nonlinear Schrödinger Equation [Working Title]","volume":"319 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Nonlinear Schrödinger Equation [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter aims to study and solve the perturbed nonlinear Schrödinger (NLS) equation with the power-law nonlinearity in a nano-optical fiber, based upon different methods such as the auxiliary equation method, the Stuart and DiPrima’s stability analysis method, and the bifurcation theory. The existence of the traveling wave solutions is discussed, and their stability properties are investigated through the modulational stability gain spectra. Moreover, the development of the chaotic motions for the systems is pointed out via the bifurcation theory. Taking into account an external periodic perturbation, we have analyzed the chaotic behavior of traveling waves through quasiperiodic route to chaos.
具有幂律非线性和高阶色散的扰动非线性Schrödinger方程的行波解和混沌运动
本章旨在研究和求解纳米光纤中具有幂律非线性的微扰非线性Schrödinger (NLS)方程,采用辅助方程法、Stuart和DiPrima的稳定性分析方法、分岔理论等不同的方法。讨论了行波解的存在性,并通过调制稳定增益谱研究了行波解的稳定性。此外,通过分岔理论指出了系统混沌运动的发展。考虑外部周期扰动,我们分析了行波通过准周期路径进入混沌的混沌行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信