Enhancing effective throughput for transmission line-based bus

A. Carpenter, Jianyun Hu, Övünç Kocabas, Michael C. Huang, Hui Wu
{"title":"Enhancing effective throughput for transmission line-based bus","authors":"A. Carpenter, Jianyun Hu, Övünç Kocabas, Michael C. Huang, Hui Wu","doi":"10.1145/2366231.2337178","DOIUrl":null,"url":null,"abstract":"Main-stream general-purpose microprocessors require a collection of high-performance interconnects to supply the necessary data movement. The trend of continued increase in core count has prompted designs of packet-switched network as a scalable solution for future-generation chips. However, the cost of scalability can be significant and especially hard to justify for smaller-scale chips. In contrast, a circuit-switched bus using transmission lines and corresponding circuits offers lower latencies and much lower energy costs for smaller-scale chips, making it a better choice than a full-blown network-on-chip (NoC) architecture. However, shared-medium designs are perceived as only a niche solution for small- to medium-scale chips. In this paper, we show that there are many low-cost mechanisms to enhance the effective throughput of a bus architecture. When a handful of highly cost-effective techniques are applied, the performance advantage of even the most idealistically configured NoCs becomes vanishingly small. We find transmission line-based buses to be a more compelling interconnect even for large-scale chip-multiprocessors, and thus bring into doubt the centrality of packet switching in future on-chip interconnect.","PeriodicalId":193578,"journal":{"name":"2012 39th Annual International Symposium on Computer Architecture (ISCA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 39th Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2366231.2337178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Main-stream general-purpose microprocessors require a collection of high-performance interconnects to supply the necessary data movement. The trend of continued increase in core count has prompted designs of packet-switched network as a scalable solution for future-generation chips. However, the cost of scalability can be significant and especially hard to justify for smaller-scale chips. In contrast, a circuit-switched bus using transmission lines and corresponding circuits offers lower latencies and much lower energy costs for smaller-scale chips, making it a better choice than a full-blown network-on-chip (NoC) architecture. However, shared-medium designs are perceived as only a niche solution for small- to medium-scale chips. In this paper, we show that there are many low-cost mechanisms to enhance the effective throughput of a bus architecture. When a handful of highly cost-effective techniques are applied, the performance advantage of even the most idealistically configured NoCs becomes vanishingly small. We find transmission line-based buses to be a more compelling interconnect even for large-scale chip-multiprocessors, and thus bring into doubt the centrality of packet switching in future on-chip interconnect.
提高基于传输线总线的有效吞吐量
主流通用微处理器需要一组高性能互连来提供必要的数据移动。核心数持续增加的趋势促使分组交换网络的设计成为下一代芯片的可扩展解决方案。然而,可扩展性的成本可能是显著的,特别是难以证明较小规模的芯片。相比之下,使用传输线和相应电路的电路交换总线为小型芯片提供更低的延迟和更低的能源成本,使其成为比成熟的片上网络(NoC)架构更好的选择。然而,共享介质设计被认为只是中小规模芯片的利基解决方案。在本文中,我们展示了有许多低成本的机制来提高总线体系结构的有效吞吐量。当应用少量高成本效益的技术时,即使是最理想配置的noc的性能优势也会变得非常小。我们发现基于传输线的总线是一种更有吸引力的互连,即使对于大规模的芯片多处理器,因此怀疑分组交换在未来片上互连中的中心地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信