PART: a partitioning tool for efficient use of distributed systems

Jing Chen, V. Taylor
{"title":"PART: a partitioning tool for efficient use of distributed systems","authors":"Jing Chen, V. Taylor","doi":"10.1109/ASAP.1997.606838","DOIUrl":null,"url":null,"abstract":"The interconnection of geographically distributed supercomputers via high-speed networks allows users to access the needed compute power for large-scale, complex applications. For efficient use of such systems, the variance in processor performance and network (i.e., interconnection network versus wide area network) performance must be considered. In this paper, we present a decomposition tool, called PART, for distributed systems. PART takes into consideration the variance in performance of the networks and processors as well as the computational complexity of the application. This is achieved via the parameters used in the objective function of simulated annealing. The initial version of PART focuses on finite element based problems. The results of using PART demonstrate a 30% reduction in execution time as compared to using conventional schemes that partition the problem domain into equal-sized subdomains.","PeriodicalId":368315,"journal":{"name":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures and Processors","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.1997.606838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The interconnection of geographically distributed supercomputers via high-speed networks allows users to access the needed compute power for large-scale, complex applications. For efficient use of such systems, the variance in processor performance and network (i.e., interconnection network versus wide area network) performance must be considered. In this paper, we present a decomposition tool, called PART, for distributed systems. PART takes into consideration the variance in performance of the networks and processors as well as the computational complexity of the application. This is achieved via the parameters used in the objective function of simulated annealing. The initial version of PART focuses on finite element based problems. The results of using PART demonstrate a 30% reduction in execution time as compared to using conventional schemes that partition the problem domain into equal-sized subdomains.
部分:高效使用分布式系统的分区工具
地理上分布的超级计算机通过高速网络相互连接,使用户能够获得大规模复杂应用所需的计算能力。为了有效地使用这些系统,必须考虑处理器性能和网络(即互连网络与广域网)性能的差异。在本文中,我们提出了一个分布式系统的分解工具,称为PART。PART考虑了网络和处理器性能的差异以及应用程序的计算复杂性。这是通过模拟退火的目标函数中使用的参数来实现的。PART的初始版本侧重于基于有限元的问题。使用PART的结果表明,与使用将问题域划分为大小相等的子域的传统方案相比,执行时间减少了30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信