A multimodal asymmetric exponential power distribution: Application to risk measurement for financial high-frequency data

Aymeric Thibault, P. Bondon
{"title":"A multimodal asymmetric exponential power distribution: Application to risk measurement for financial high-frequency data","authors":"Aymeric Thibault, P. Bondon","doi":"10.23919/EUSIPCO.2017.8081378","DOIUrl":null,"url":null,"abstract":"Interest in risk measurement for high-frequency data has increased since the volume of high-frequency trading stepped up over the two last decades. This paper proposes a multimodal extension of the Exponential Power Distribution (EPD), called the Multimodal Asymmetric Exponential Power Distribution (MAEPD). We derive moments and we propose a convenient stochastic representation of the MAEPD. We establish consistency, asymptotic normality and efficiency of the maximum likelihood estimators (MLE). An application to risk measurement for high-frequency data is presented. An autoregressive moving average multiplicative component generalized autoregressive conditional heteroskedastic (ARMA-mcsGARCH) model is fitted to Financial Times Stock Exchange (FTSE) 100 intraday returns. Performances for Value-at-Risk (VaR) and Expected Shortfall (ES) estimation are evaluated. We show that the MAEPD outperforms commonly used distributions in risk measurement.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interest in risk measurement for high-frequency data has increased since the volume of high-frequency trading stepped up over the two last decades. This paper proposes a multimodal extension of the Exponential Power Distribution (EPD), called the Multimodal Asymmetric Exponential Power Distribution (MAEPD). We derive moments and we propose a convenient stochastic representation of the MAEPD. We establish consistency, asymptotic normality and efficiency of the maximum likelihood estimators (MLE). An application to risk measurement for high-frequency data is presented. An autoregressive moving average multiplicative component generalized autoregressive conditional heteroskedastic (ARMA-mcsGARCH) model is fitted to Financial Times Stock Exchange (FTSE) 100 intraday returns. Performances for Value-at-Risk (VaR) and Expected Shortfall (ES) estimation are evaluated. We show that the MAEPD outperforms commonly used distributions in risk measurement.
多模态非对称指数功率分布:在金融高频数据风险度量中的应用
在过去的二十年里,高频交易的数量不断增加,人们对高频数据风险度量的兴趣也随之增加。本文提出了指数功率分布(EPD)的多模态扩展,称为多模态非对称指数功率分布(MAEPD)。我们推导了矩,并提出了MAEPD的一种方便的随机表示。建立了极大似然估计的相合性、渐近正态性和有效性。提出了一个在高频数据风险度量中的应用。利用自回归移动平均乘分量广义自回归条件异方差(ARMA-mcsGARCH)模型拟合金融时报证券交易所(FTSE) 100日内收益。评估了风险价值(VaR)和预期缺口(ES)估计的性能。我们表明MAEPD在风险度量中优于常用的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信