Grouping of users based on user navigation behaviour using supervised association rule tree mining

R. GeethaRamani, P. Revathy, L. Balasubramanian
{"title":"Grouping of users based on user navigation behaviour using supervised association rule tree mining","authors":"R. GeethaRamani, P. Revathy, L. Balasubramanian","doi":"10.1504/IJRIS.2018.10017514","DOIUrl":null,"url":null,"abstract":"In this internet world, an increased interest of users in search of World Wide Web results in wide relevance of web mining, an application of data mining. Clustering has been widely used for web usage mining. Finding initial cluster center and specifying the number of clusters are the major challenges, which are overcome in this work by grouping of users based on the target class value. The benchmark dataset MSNBC is collected for the entire day of September 28, 1999. Supervised association rule tree mining is used to find frequent itemset for the targeted class value and thus generating 'if then rules'. Users are automatically clustered based on the rules satisfying the ground truth, resulting in 36 clusters in two iterations. The results revealed that the renowned clustering algorithms such as K-means takes 22 iterations for forming 36 clusters, wherein the proposed work generates 36 clusters in two iterations.","PeriodicalId":360794,"journal":{"name":"Int. J. Reason. based Intell. Syst.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Reason. based Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJRIS.2018.10017514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this internet world, an increased interest of users in search of World Wide Web results in wide relevance of web mining, an application of data mining. Clustering has been widely used for web usage mining. Finding initial cluster center and specifying the number of clusters are the major challenges, which are overcome in this work by grouping of users based on the target class value. The benchmark dataset MSNBC is collected for the entire day of September 28, 1999. Supervised association rule tree mining is used to find frequent itemset for the targeted class value and thus generating 'if then rules'. Users are automatically clustered based on the rules satisfying the ground truth, resulting in 36 clusters in two iterations. The results revealed that the renowned clustering algorithms such as K-means takes 22 iterations for forming 36 clusters, wherein the proposed work generates 36 clusters in two iterations.
使用监督关联规则树挖掘基于用户导航行为的用户分组
在这个互联网世界中,用户对万维网搜索兴趣的增加导致了网络挖掘这一数据挖掘的应用的广泛相关性。聚类技术已广泛应用于web使用挖掘。寻找初始聚类中心和指定聚类数量是主要的挑战,在这项工作中,通过基于目标类值对用户进行分组来克服这些挑战。基准数据集MSNBC是在1999年9月28日全天收集的。监督关联规则树挖掘用于寻找目标类值的频繁项集,从而生成“如果则规则”。用户根据满足基本事实的规则自动聚类,在两次迭代中产生36个聚类。结果表明,K-means等著名的聚类算法需要22次迭代才能形成36个聚类,其中本文的工作在两次迭代中生成36个聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信