A Fast and Unbiased Minimalistic Resampling Approach for the Particle Filter

R. Gurajala, P. Choppala, J. Meka, Paul D. Teal
{"title":"A Fast and Unbiased Minimalistic Resampling Approach for the Particle Filter","authors":"R. Gurajala, P. Choppala, J. Meka, Paul D. Teal","doi":"10.1109/ICSIPA52582.2021.9576807","DOIUrl":null,"url":null,"abstract":"The particle filter is an important approximation method for online state estimation in nonlinear nonGaussian scenarios. The resampling step in the particle filter is critical because it eliminates the wasteful use of particles that do not contribute to the posterior (degeneracy). The fully stochastic resamplers, despite being unbiased in approximating the posterior density, involve exhaustive and sequential communication within the particles and thus are computationally expensive. The alternate partial deterministic resamplers overcome this problem by reducing the communication within particles but this leads to approximation bias. This paper proposes a fast resampling procedure that gives an accurate approximation of the posterior and tracks as accurately as the conventional resamplers.","PeriodicalId":326688,"journal":{"name":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA52582.2021.9576807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The particle filter is an important approximation method for online state estimation in nonlinear nonGaussian scenarios. The resampling step in the particle filter is critical because it eliminates the wasteful use of particles that do not contribute to the posterior (degeneracy). The fully stochastic resamplers, despite being unbiased in approximating the posterior density, involve exhaustive and sequential communication within the particles and thus are computationally expensive. The alternate partial deterministic resamplers overcome this problem by reducing the communication within particles but this leads to approximation bias. This paper proposes a fast resampling procedure that gives an accurate approximation of the posterior and tracks as accurately as the conventional resamplers.
粒子滤波的快速无偏极小重采样方法
粒子滤波是非线性非高斯状态在线估计的一种重要逼近方法。在粒子滤波器的重采样步骤是至关重要的,因为它消除了浪费使用的粒子,不有助于后验(简并)。完全随机重采样,尽管在近似后验密度方面是无偏的,但涉及粒子内部的穷尽和顺序通信,因此计算成本很高。交替的部分确定性重采样器通过减少粒子间的通信来克服这一问题,但这会导致近似偏差。本文提出了一种快速重采样方法,该方法可以精确地近似后验,并与传统的重采样器一样精确地跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信