Modeling Strategies and Spatial Filters for Improving the Performance of P300-speller within and across Individuals

Tao Wang, Pengxiao Liu, X. An, Yufeng Ke, Jinzhao Xu, Mingpeng Xu, Linghan Kong, Wentao Liu, Dong Ming
{"title":"Modeling Strategies and Spatial Filters for Improving the Performance of P300-speller within and across Individuals","authors":"Tao Wang, Pengxiao Liu, X. An, Yufeng Ke, Jinzhao Xu, Mingpeng Xu, Linghan Kong, Wentao Liu, Dong Ming","doi":"10.1109/CIVEMSA45640.2019.9071607","DOIUrl":null,"url":null,"abstract":"In recent years, improving the performance of cross-individual brain-computer interfaces (BCI) has become a research hotspot. This paper proposes a within-individual model and two cross-individual models for P300 speller character recognition and uses canonical correlation analysis (CCA) spatial filter and task-related component analysis (TRCA) spatial filter to optimize the model. Those methods are compared in their performance to allow for an accurate classification of P300 speller. As a result, the best classification accuracy rate of the within-individual recognition model is 98.83%, and the best classification accuracy rate in cross-individual model is 85.09%.","PeriodicalId":293990,"journal":{"name":"2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA45640.2019.9071607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, improving the performance of cross-individual brain-computer interfaces (BCI) has become a research hotspot. This paper proposes a within-individual model and two cross-individual models for P300 speller character recognition and uses canonical correlation analysis (CCA) spatial filter and task-related component analysis (TRCA) spatial filter to optimize the model. Those methods are compared in their performance to allow for an accurate classification of P300 speller. As a result, the best classification accuracy rate of the within-individual recognition model is 98.83%, and the best classification accuracy rate in cross-individual model is 85.09%.
提高p300拼写者在个体内部和个体之间表现的建模策略和空间过滤器
近年来,提高跨个体脑机接口(BCI)的性能已成为研究热点。本文提出了P300拼写字符识别的个体内模型和两个跨个体模型,并使用典型相关分析(CCA)空间滤波器和任务相关分量分析(TRCA)空间滤波器对模型进行优化。比较了这些方法的性能,以便对P300拼写器进行准确的分类。结果表明,个体内识别模型的最佳分类准确率为98.83%,跨个体识别模型的最佳分类准确率为85.09%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信