Multi Objective PSO with Passive Congregation for Load Balancing Problem

M. Marufuzzaman, Muneed Anjum Timu, Jubayer Sarkar, Aminul Islam, L. F. Rahman, L. Sidek
{"title":"Multi Objective PSO with Passive Congregation for Load Balancing Problem","authors":"M. Marufuzzaman, Muneed Anjum Timu, Jubayer Sarkar, Aminul Islam, L. F. Rahman, L. Sidek","doi":"10.15837/ijccc.2021.5.4274","DOIUrl":null,"url":null,"abstract":"High-level architecture (HLA) and Distributed Interactive Simulation (DIS) are commonly used for the distributed system. However, HLA suffers from a resource allocation problem and to solve this issue, optimization of load balancing is required. Efficient load balancing can minimize the simulation time of HLA and this optimization can be done using the multi-objective evolutionary algorithms (MOEA). Multi-Objective Particle Swarm Optimization (MOPSO) based on crowding distance (CD) is a popular MOEA method used to balance HLA load. In this research, the efficiency of MOPSO-CD is further improved by introducing the passive congregation (PC) method. Several simulation tests are done on this improved MOPSO-CD-PC method and the results showed that in terms of Coverage, Spacing, Non-dominated solutions and Inverted generational distance metrics, the MOPSO-CD-PC performed better than the previous MOPSO-CD algorithm. Hence, it can be a useful tool to optimize the load balancing problem in HLA.","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2021.5.4274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-level architecture (HLA) and Distributed Interactive Simulation (DIS) are commonly used for the distributed system. However, HLA suffers from a resource allocation problem and to solve this issue, optimization of load balancing is required. Efficient load balancing can minimize the simulation time of HLA and this optimization can be done using the multi-objective evolutionary algorithms (MOEA). Multi-Objective Particle Swarm Optimization (MOPSO) based on crowding distance (CD) is a popular MOEA method used to balance HLA load. In this research, the efficiency of MOPSO-CD is further improved by introducing the passive congregation (PC) method. Several simulation tests are done on this improved MOPSO-CD-PC method and the results showed that in terms of Coverage, Spacing, Non-dominated solutions and Inverted generational distance metrics, the MOPSO-CD-PC performed better than the previous MOPSO-CD algorithm. Hence, it can be a useful tool to optimize the load balancing problem in HLA.
负载均衡问题的被动聚集多目标粒子群算法
高级体系结构(HLA)和分布式交互仿真(DIS)是分布式系统中常用的两种方法。但是,HLA存在资源分配问题,需要对负载均衡进行优化。高效的负载均衡可以最大限度地减少HLA的仿真时间,这种优化可以使用多目标进化算法(MOEA)实现。基于拥挤距离(CD)的多目标粒子群优化(MOPSO)是一种常用的用于HLA负载平衡的多目标粒子群优化方法。在本研究中,通过引入被动聚合(PC)方法,进一步提高了MOPSO-CD的效率。对改进的MOPSO-CD- pc算法进行了仿真测试,结果表明,在覆盖、间隔、非支配解和倒代距离指标方面,改进的MOPSO-CD- pc算法都优于原来的MOPSO-CD算法。因此,它可以成为优化HLA中负载平衡问题的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信