Brain Segmentation using Adaptive Thresholding, K-Means Clustering and Mathematical Morphology in MRI Data

Luthfi Atikah, Novrindah Alvi Hasanah, R. Sarno, Aziz Fajar, Dewi Rahmawati
{"title":"Brain Segmentation using Adaptive Thresholding, K-Means Clustering and Mathematical Morphology in MRI Data","authors":"Luthfi Atikah, Novrindah Alvi Hasanah, R. Sarno, Aziz Fajar, Dewi Rahmawati","doi":"10.1109/iSemantic50169.2020.9234303","DOIUrl":null,"url":null,"abstract":"Nowadays, many methods have been applied for brain segmentation on MRI data. This paper proposes a new method for brain segmentation using Adaptive Thresholding, K-Means Clustering, and Morphological Mathematics in MRI data. The adaptive threshold was chosen because the adaptive threshold method will vary across images to suit various lighting conditions and background changes. We segment the corpus callosum. This experiment shows that with the Adaptive Thresholding, K-Means Clustering, and Mathematical Morphology to segment the corpus callosum produces the highest Dice Similarity Coefficient (DSC) value of 0.757.","PeriodicalId":345558,"journal":{"name":"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSemantic50169.2020.9234303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Nowadays, many methods have been applied for brain segmentation on MRI data. This paper proposes a new method for brain segmentation using Adaptive Thresholding, K-Means Clustering, and Morphological Mathematics in MRI data. The adaptive threshold was chosen because the adaptive threshold method will vary across images to suit various lighting conditions and background changes. We segment the corpus callosum. This experiment shows that with the Adaptive Thresholding, K-Means Clustering, and Mathematical Morphology to segment the corpus callosum produces the highest Dice Similarity Coefficient (DSC) value of 0.757.
自适应阈值分割、k均值聚类和数学形态学在MRI数据中的应用
目前,对MRI数据进行脑分割的方法有很多。本文提出了一种利用自适应阈值分割、k均值聚类和形态学数学对MRI数据进行脑分割的新方法。选择自适应阈值是因为自适应阈值方法会在不同的图像中变化,以适应不同的照明条件和背景变化。我们分割胼胝体。实验表明,采用自适应阈值分割、K-Means聚类和数学形态学对胼胝体进行分割得到的骰子相似系数(DSC)值最高,为0.757。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信