Safoura Sadegh Pour Aji Bishe, Leah Liebelt, Ying Fang, Z. Lerner
{"title":"A Low-Profile Hip Exoskeleton for Pathological Gait Assistance: Design and Pilot Testing","authors":"Safoura Sadegh Pour Aji Bishe, Leah Liebelt, Ying Fang, Z. Lerner","doi":"10.1109/icra46639.2022.9812300","DOIUrl":null,"url":null,"abstract":"Hip exoskeletons may hold potential to augment walking performance and mobility in individuals with disabilities. The purpose of this study was to design and validate a novel autonomous hip exoskeleton with a user-adaptive control strategy capable of reducing the energy cost of level and incline walking in individuals with and without walking impairment. First, in a small cohort of three unimpaired individuals, we validated the ability of our control strategy to provide hip flexion-extension torque that was proportional to the biological hip moment and reduce the energy cost of level and incline walking (24 ± 5% and 13 ± 5% reductions, respectively). Next, in a clinical feasibility experiment with an individual with significant walking impairment from cerebral palsy, we demonstrated that our untethered device and adaptive control scheme improved hip extension by 14° across the gait cycle, reduced average rectus femoris and semitendinosus muscle activity by 23% and 46%, respectively, and resulted in a 15% improvement in metabolic cost relative to walking without wearing the device.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9812300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Hip exoskeletons may hold potential to augment walking performance and mobility in individuals with disabilities. The purpose of this study was to design and validate a novel autonomous hip exoskeleton with a user-adaptive control strategy capable of reducing the energy cost of level and incline walking in individuals with and without walking impairment. First, in a small cohort of three unimpaired individuals, we validated the ability of our control strategy to provide hip flexion-extension torque that was proportional to the biological hip moment and reduce the energy cost of level and incline walking (24 ± 5% and 13 ± 5% reductions, respectively). Next, in a clinical feasibility experiment with an individual with significant walking impairment from cerebral palsy, we demonstrated that our untethered device and adaptive control scheme improved hip extension by 14° across the gait cycle, reduced average rectus femoris and semitendinosus muscle activity by 23% and 46%, respectively, and resulted in a 15% improvement in metabolic cost relative to walking without wearing the device.