Interval type-2 fuzzy logic systems optimization with swarm algorithms for data classification

D. Mai
{"title":"Interval type-2 fuzzy logic systems optimization with swarm algorithms for data classification","authors":"D. Mai","doi":"10.1109/KSE53942.2021.9648598","DOIUrl":null,"url":null,"abstract":"Fuzzy systems based on the interval type-2 fuzzy set have many advantages in processing uncertain data compared with the fuzzy systems based on the type-1 fuzzy set. The design of optimal interval type-2 fuzzy systems is often difficult due to many parameters. The selection and construction of membership functions used to map the crisp inputs to fuzzifier data play an important role and greatly influence the accuracy of the fuzzy system. The paper proposes a hybrid optimization model using swarm optimization algorithms to find the parameters for the membership function of the interval type-2 fuzzy logic system (IT2FLS). For the experiment, the paper uses optimization techniques such as particle swarm optimization (PSO), genetic algorithm (GA), ant colony optimization (ACO) to find the optimal parameter for IT2FLS applied to the classification problem. Experimental results on datasets from the UCI machine learning library and satellite image data show that hybrid optimization models between the optimization algorithm and IT2FLS can help IT2FLS achieve higher accuracy in data classification problems.","PeriodicalId":130986,"journal":{"name":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE53942.2021.9648598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Fuzzy systems based on the interval type-2 fuzzy set have many advantages in processing uncertain data compared with the fuzzy systems based on the type-1 fuzzy set. The design of optimal interval type-2 fuzzy systems is often difficult due to many parameters. The selection and construction of membership functions used to map the crisp inputs to fuzzifier data play an important role and greatly influence the accuracy of the fuzzy system. The paper proposes a hybrid optimization model using swarm optimization algorithms to find the parameters for the membership function of the interval type-2 fuzzy logic system (IT2FLS). For the experiment, the paper uses optimization techniques such as particle swarm optimization (PSO), genetic algorithm (GA), ant colony optimization (ACO) to find the optimal parameter for IT2FLS applied to the classification problem. Experimental results on datasets from the UCI machine learning library and satellite image data show that hybrid optimization models between the optimization algorithm and IT2FLS can help IT2FLS achieve higher accuracy in data classification problems.
区间2型模糊逻辑系统的群算法优化
与基于区间2型模糊集的模糊系统相比,基于区间2型模糊集的模糊系统在处理不确定数据方面具有许多优点。最优区间2型模糊系统由于参数较多,往往设计困难。将清晰输入映射到模糊化数据的隶属函数的选择和构造对模糊系统的精度有重要影响。针对区间2型模糊逻辑系统(IT2FLS),提出了一种利用群优化算法求解隶属函数参数的混合优化模型。在实验中,本文采用粒子群算法(PSO)、遗传算法(GA)、蚁群算法(ACO)等优化技术寻找IT2FLS应用于分类问题的最优参数。在UCI机器学习库和卫星图像数据集上的实验结果表明,优化算法与IT2FLS之间的混合优化模型可以帮助IT2FLS在数据分类问题上达到更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信