Evaluating Factor Pricing Models Using High Frequency Panels

Yoosoon Chang, Yongok Choi, Hwagyun Kim, Joon Y. Park
{"title":"Evaluating Factor Pricing Models Using High Frequency Panels","authors":"Yoosoon Chang, Yongok Choi, Hwagyun Kim, Joon Y. Park","doi":"10.2139/ssrn.1756859","DOIUrl":null,"url":null,"abstract":"This paper develops a new framework and statistical tools to analyze stock returns using high frequency data. We consider a continuous-time multi-factor model via a continuous-time multivariate regression model incorporating realistic empirical features, such as persistent stochastic volatilities with leverage effects. We find that conventional regression approach often leads to misleading and inconsistent test results. We overcome this by using samples collected at random intervals, which are set by the clock running inversely proportional to the market volatility. We find that the size factor has difficulty in explaining the size-based portfolios, while the book-to-market factor is a valid pricing factor.","PeriodicalId":369344,"journal":{"name":"American Finance Association Meetings (AFA)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Finance Association Meetings (AFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1756859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper develops a new framework and statistical tools to analyze stock returns using high frequency data. We consider a continuous-time multi-factor model via a continuous-time multivariate regression model incorporating realistic empirical features, such as persistent stochastic volatilities with leverage effects. We find that conventional regression approach often leads to misleading and inconsistent test results. We overcome this by using samples collected at random intervals, which are set by the clock running inversely proportional to the market volatility. We find that the size factor has difficulty in explaining the size-based portfolios, while the book-to-market factor is a valid pricing factor.
利用高频面板评价要素定价模型
本文提出了一种利用高频数据分析股票收益的新框架和统计工具。我们通过一个包含现实经验特征的连续时间多元回归模型来考虑一个连续时间多因素模型,例如具有杠杆效应的持续随机波动。我们发现传统的回归方法经常导致误导和不一致的测试结果。我们通过使用随机间隔收集的样本来克服这个问题,随机间隔由时钟设定,与市场波动成反比。我们发现规模因子难以解释基于规模的投资组合,而账面市值因子是一个有效的定价因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信