Solving Knapsack Problem with Genetic Algorithm Approach

M. Saraswat, R. Tripathi
{"title":"Solving Knapsack Problem with Genetic Algorithm Approach","authors":"M. Saraswat, R. Tripathi","doi":"10.2139/ssrn.3565876","DOIUrl":null,"url":null,"abstract":"The knapsack problem is preferred in analyzing area of stochastic & combinational extension with the intention of choosing objects into knapsack to avail maximum capacity while not increasing knapsack’s stowage. The main focus of this paper describes problem solving approach using genetic algorithm (GA) for the 0-1 knapsack problem. The experiments started with some initial value of Knapsack variables remain continue until getting the best value. This paper contains two sections: The first section contains concise description of the basic idea of GAs and the definition of Knapsack Problem. Second section has implementation of 0-1 Knapsack Problem using GAs.","PeriodicalId":208496,"journal":{"name":"Mathematical Modeling and Computation of Real-Time Problems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computation of Real-Time Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3565876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The knapsack problem is preferred in analyzing area of stochastic & combinational extension with the intention of choosing objects into knapsack to avail maximum capacity while not increasing knapsack’s stowage. The main focus of this paper describes problem solving approach using genetic algorithm (GA) for the 0-1 knapsack problem. The experiments started with some initial value of Knapsack variables remain continue until getting the best value. This paper contains two sections: The first section contains concise description of the basic idea of GAs and the definition of Knapsack Problem. Second section has implementation of 0-1 Knapsack Problem using GAs.
用遗传算法求解背包问题
在分析随机组合可拓区域时,背包问题更受欢迎,其目的是在不增加背包装载量的情况下,选择最大容量的物品装入背包。本文主要介绍了用遗传算法求解0-1背包问题的方法。实验从某个背包变量的初始值开始,一直持续到得到最优值。本文分为两部分:第一部分简要介绍了GAs的基本思想和背包问题的定义。第二部分利用GAs实现了0-1背包问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信