On Projections of the Supercritical Contact Process: Uniform Mixing and Cutoff Phenomenon

Stein Andreas Bethuelsen
{"title":"On Projections of the Supercritical Contact Process: Uniform Mixing and Cutoff Phenomenon","authors":"Stein Andreas Bethuelsen","doi":"10.1142/9789811206092_0009","DOIUrl":null,"url":null,"abstract":"We consider the contact process on a countable-infinite and connected graph of bounded degree. For this process started from the upper invariant measure, we prove certain uniform mixing properties under the assumption that the infection parameter is sufficiently large. In particular, we show that the projection of such a process onto a finite subset forms a process which is $\\phi$-mixing. The proof of this is based on large deviation estimates for the spread of an infection and general correlation inequalities. In the special case of the contact process on $\\mathbb{Z}^d$, $d\\geq1$, we furthermore prove the cutoff phenomenon, valid in the entire supercritical regime.","PeriodicalId":163241,"journal":{"name":"Genealogies of Interacting Particle Systems","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genealogies of Interacting Particle Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811206092_0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the contact process on a countable-infinite and connected graph of bounded degree. For this process started from the upper invariant measure, we prove certain uniform mixing properties under the assumption that the infection parameter is sufficiently large. In particular, we show that the projection of such a process onto a finite subset forms a process which is $\phi$-mixing. The proof of this is based on large deviation estimates for the spread of an infection and general correlation inequalities. In the special case of the contact process on $\mathbb{Z}^d$, $d\geq1$, we furthermore prove the cutoff phenomenon, valid in the entire supercritical regime.
超临界接触过程的投影:均匀混合和切断现象
考虑有界次可数无限连通图上的接触过程。对于这个从上不变测度开始的过程,我们在感染参数足够大的假设下证明了某些均匀混合性质。特别地,我们证明了这种过程在有限子集上的投影形成了一个$\phi$ -混合过程。证明这一点是基于对感染传播的大偏差估计和一般相关不等式。在$\mathbb{Z}^d$, $d\geq1$上接触过程的特殊情况下,进一步证明了截断现象在整个超临界区都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信