Stochastic Encoding based Distributed Blind Estimation for Deterministic Vector Signal

Wentao Zhang, Li Chen, Weidong Wang
{"title":"Stochastic Encoding based Distributed Blind Estimation for Deterministic Vector Signal","authors":"Wentao Zhang, Li Chen, Weidong Wang","doi":"10.1109/VTC2020-Spring48590.2020.9129378","DOIUrl":null,"url":null,"abstract":"In large-scale wireless sensor networks (WSN), a large number of spatially dispersed sensors and distributed signal estimation schemes provide ubiquitous sensing. However, low-cost sensors are insufficient to support conventional distributed estimation schemes, since the channel training process causes an enormous resource consumption in the large-scale WSN. This paper proposes a distributed blind estimation scheme that consists of two components: stochastic coding and statistical inference. The stochastic coding turns the desired vector signal into statistical parameters to govern the quantized symbols. At the fusion center (FC), statistical inference based on unsupervised clustering algorithms is utilized to recover the vector signal. The channel information is not required in the proposed distributed estimation. Besides, we investigate the asymptotic properties of the estimation error. Simulation results demonstrate the effectiveness of the proposed blind estimation scheme.","PeriodicalId":348099,"journal":{"name":"2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2020-Spring48590.2020.9129378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In large-scale wireless sensor networks (WSN), a large number of spatially dispersed sensors and distributed signal estimation schemes provide ubiquitous sensing. However, low-cost sensors are insufficient to support conventional distributed estimation schemes, since the channel training process causes an enormous resource consumption in the large-scale WSN. This paper proposes a distributed blind estimation scheme that consists of two components: stochastic coding and statistical inference. The stochastic coding turns the desired vector signal into statistical parameters to govern the quantized symbols. At the fusion center (FC), statistical inference based on unsupervised clustering algorithms is utilized to recover the vector signal. The channel information is not required in the proposed distributed estimation. Besides, we investigate the asymptotic properties of the estimation error. Simulation results demonstrate the effectiveness of the proposed blind estimation scheme.
基于随机编码的确定性矢量信号分布式盲估计
在大规模无线传感器网络(WSN)中,大量空间分散的传感器和分布式信号估计方案提供了泛在感知。然而,低成本传感器不足以支持传统的分布式估计方案,因为在大规模WSN中,信道训练过程会导致巨大的资源消耗。本文提出了一种由随机编码和统计推断两部分组成的分布式盲估计方案。随机编码将期望的矢量信号转化为统计参数来控制量化符号。在融合中心(FC),利用基于无监督聚类算法的统计推断来恢复矢量信号。在所提出的分布式估计中不需要信道信息。此外,我们还研究了估计误差的渐近性质。仿真结果验证了盲估计方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信