Natural Language Processing and Deep Learning Models to Classify Phase of Flight in Aviation Safety Occurrences

Aziida Nanyonga, Hassan Wasswa, Oleksandra Molloy, Ugur Turhan, G. Wild
{"title":"Natural Language Processing and Deep Learning Models to Classify Phase of Flight in Aviation Safety Occurrences","authors":"Aziida Nanyonga, Hassan Wasswa, Oleksandra Molloy, Ugur Turhan, G. Wild","doi":"10.1109/TENSYMP55890.2023.10223666","DOIUrl":null,"url":null,"abstract":"This study focuses on the classification of safety occurrences in the air transport system using natural language processing (NLP) and artificial intelligence (AI) models. The researchers utilized ResNet and sRNN deep learning models to classify flight phases based on unstructured text narratives of safety occurrence reports from the NTSB. The study evaluated the performance of these models using a dataset of 27,000 safety occurrence reports and found that both models achieved an accuracy exceeding 68%, surpassing the random guess rate of 14% for the seven-class classification problem. Additionally, the models exhibited high precision, recall, and F1 scores. Notably, the sRNN model outperformed the simplified ResNet model architecture used in the study. These findings suggest that NLP and deep learning models can effectively extract flight phase information from raw text narratives, enabling the thorough analysis of safety occurrences in the aviation industry.","PeriodicalId":314726,"journal":{"name":"2023 IEEE Region 10 Symposium (TENSYMP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP55890.2023.10223666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the classification of safety occurrences in the air transport system using natural language processing (NLP) and artificial intelligence (AI) models. The researchers utilized ResNet and sRNN deep learning models to classify flight phases based on unstructured text narratives of safety occurrence reports from the NTSB. The study evaluated the performance of these models using a dataset of 27,000 safety occurrence reports and found that both models achieved an accuracy exceeding 68%, surpassing the random guess rate of 14% for the seven-class classification problem. Additionally, the models exhibited high precision, recall, and F1 scores. Notably, the sRNN model outperformed the simplified ResNet model architecture used in the study. These findings suggest that NLP and deep learning models can effectively extract flight phase information from raw text narratives, enabling the thorough analysis of safety occurrences in the aviation industry.
航空安全事件中飞行阶段分类的自然语言处理和深度学习模型
本研究的重点是使用自然语言处理(NLP)和人工智能(AI)模型对航空运输系统中的安全事件进行分类。研究人员利用ResNet和sRNN深度学习模型,根据NTSB安全事件报告的非结构化文本叙述,对飞行阶段进行分类。该研究使用27,000份安全事故报告的数据集评估了这些模型的性能,发现这两个模型的准确率都超过了68%,超过了七类分类问题的14%的随机猜测率。此外,模型具有较高的精度、召回率和F1分数。值得注意的是,sRNN模型优于研究中使用的简化ResNet模型体系结构。这些发现表明,NLP和深度学习模型可以有效地从原始文本叙述中提取飞行阶段信息,从而能够对航空业的安全事件进行彻底分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信