A Sub-mW Dual-Engine ML Inference System-on-Chip for Complete End-to-End Face-Analysis at the Edge

Petar Jokic, E. Azarkhish, Régis Cattenoz, Engin Türetken, L. Benini, S. Emery
{"title":"A Sub-mW Dual-Engine ML Inference System-on-Chip for Complete End-to-End Face-Analysis at the Edge","authors":"Petar Jokic, E. Azarkhish, Régis Cattenoz, Engin Türetken, L. Benini, S. Emery","doi":"10.23919/VLSICircuits52068.2021.9492401","DOIUrl":null,"url":null,"abstract":"Smart vision-based IoT applications operate on a sub-mW power budget while requiring power-hungry always-on image processing capabilities. This work presents a system-on-chip (SoC) that enables hierarchical processing of face analysis under multiple sub-mW operating scenarios using two tightly coupled machine learning (ML) accelerators. A dynamically scalable binary decision tree (BDT) engine for face detection (FD) allows triggering a multi-precision convolutional neural network (CNN) engine for subsequent face recognition (FR). The 22nm SoC can therefore dynamically trade-off image analysis depth, frames-per-second (FPS), accuracy, and power consumption. It implements complete end-to-end edge processing, enabling always-on FD and FR within the tight 1mW power budget of a 55mm diameter indoor solar panel. The SoC achieves >2x improvement in energy efficiency at iso-accuracy and iso-FPS over state-of-the-art (SoA) systems.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Smart vision-based IoT applications operate on a sub-mW power budget while requiring power-hungry always-on image processing capabilities. This work presents a system-on-chip (SoC) that enables hierarchical processing of face analysis under multiple sub-mW operating scenarios using two tightly coupled machine learning (ML) accelerators. A dynamically scalable binary decision tree (BDT) engine for face detection (FD) allows triggering a multi-precision convolutional neural network (CNN) engine for subsequent face recognition (FR). The 22nm SoC can therefore dynamically trade-off image analysis depth, frames-per-second (FPS), accuracy, and power consumption. It implements complete end-to-end edge processing, enabling always-on FD and FR within the tight 1mW power budget of a 55mm diameter indoor solar panel. The SoC achieves >2x improvement in energy efficiency at iso-accuracy and iso-FPS over state-of-the-art (SoA) systems.
在边缘完成端到端面部分析的亚毫瓦双引擎机器学习推理片上系统
基于智能视觉的物联网应用在低于兆瓦的功率预算下运行,同时需要耗电的始终在线的图像处理功能。本研究提出了一种片上系统(SoC),使用两个紧密耦合的机器学习(ML)加速器,可以在多个亚毫瓦操作场景下对面部分析进行分层处理。动态可扩展的二叉决策树(BDT)人脸检测引擎允许触发多精度卷积神经网络(CNN)引擎进行后续的人脸识别(FR)。因此,22nm SoC可以动态权衡图像分析深度,每秒帧数(FPS),精度和功耗。它实现了完整的端到端边缘处理,在55mm直径的室内太阳能电池板的1mW功率预算内实现了始终打开的FD和FR。与最先进的(SoA)系统相比,SoC在等精度和等fps下实现了bb60倍的能效提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信