Comparative analysis of PCA and KPCA on paddy growth stages classification

Hendra Halim, S. M. Isa, S. Mulyono
{"title":"Comparative analysis of PCA and KPCA on paddy growth stages classification","authors":"Hendra Halim, S. M. Isa, S. Mulyono","doi":"10.1109/TENCONSPRING.2016.7519398","DOIUrl":null,"url":null,"abstract":"Hyperspectral image is capable to distinguish paddy growth stages with classification methods. Hyperspectral has disadvantages. One of the disadvantages is hyperspectral image has high dimensionality that can cause curse of dimensionality. In this paper, PCA and Kernel PCA are used to reduce the dimension of hyperspectral data. The objective in this research is to analyze the effect of using dimension reduction techniques on hyperspectral data on paddy growth stages classification. The result will show the effect of dimension reduction techniques whether it is capable to improve the classification accuracy and execution time.","PeriodicalId":166275,"journal":{"name":"2016 IEEE Region 10 Symposium (TENSYMP)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2016.7519398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Hyperspectral image is capable to distinguish paddy growth stages with classification methods. Hyperspectral has disadvantages. One of the disadvantages is hyperspectral image has high dimensionality that can cause curse of dimensionality. In this paper, PCA and Kernel PCA are used to reduce the dimension of hyperspectral data. The objective in this research is to analyze the effect of using dimension reduction techniques on hyperspectral data on paddy growth stages classification. The result will show the effect of dimension reduction techniques whether it is capable to improve the classification accuracy and execution time.
主成分分析法与KPCA法在水稻生育期分类中的比较分析
高光谱图像可以用分类方法区分水稻生长阶段。高光谱也有缺点。其缺点之一是高光谱图像的维数过高,会造成维数的破坏。本文采用主成分分析法和核主成分分析法对高光谱数据进行降维。本研究的目的是分析使用降维技术对高光谱数据进行水稻生育期分类的影响。结果将显示降维技术是否能够提高分类精度和执行时间的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信