Auto-completion of Contours in Sketches, Maps, and Sparse 2D Images Based on Topological Persistence

V. Kurlin
{"title":"Auto-completion of Contours in Sketches, Maps, and Sparse 2D Images Based on Topological Persistence","authors":"V. Kurlin","doi":"10.1109/SYNASC.2014.85","DOIUrl":null,"url":null,"abstract":"We design a new fast algorithm to automatically complete closed contours in a finite point cloud on the plane. The only input can be a scanned map with almost closed curves, a hand-drawn artistic sketch or any sparse dotted image in 2D without any extra parameters. The output is a hierarchy of closed contours that have a long enough life span (persistence) in a sequence of nested neighborhoods of the input points. We prove theoretical guarantees when, for a given noisy sample of a graph in the plane, the output contours geometrically approximate the original contours in the unknown graph.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We design a new fast algorithm to automatically complete closed contours in a finite point cloud on the plane. The only input can be a scanned map with almost closed curves, a hand-drawn artistic sketch or any sparse dotted image in 2D without any extra parameters. The output is a hierarchy of closed contours that have a long enough life span (persistence) in a sequence of nested neighborhoods of the input points. We prove theoretical guarantees when, for a given noisy sample of a graph in the plane, the output contours geometrically approximate the original contours in the unknown graph.
基于拓扑持久性的草图、地图和稀疏2D图像中轮廓的自动完成
我们设计了一种新的快速算法来自动完成平面上有限点云中的封闭轮廓。唯一的输入可以是几乎闭合曲线的扫描地图,手绘的艺术草图或任何没有任何额外参数的二维稀疏点图像。输出是一个封闭轮廓的层次结构,在输入点的嵌套邻域序列中具有足够长的生命周期(持久性)。我们证明了理论保证,对于平面上给定的有噪声的图样本,输出轮廓几何上近似于未知图中的原始轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信