Noise variance in signal denoising

S. Beheshti, M. Dahleh
{"title":"Noise variance in signal denoising","authors":"S. Beheshti, M. Dahleh","doi":"10.1109/ICASSP.2003.1201649","DOIUrl":null,"url":null,"abstract":"In the thresholding method of denoising the optimum threshold is obtained as a function of additive noise variance. In practical problems, where the variance of the noise is unknown, the first step is to estimate the noise variance. The estimated noise variance is then implemented in calculation of the optimum threshold. The current available methods of variance estimation are heuristic. Here, we provide a new method for estimation of the additive noise variance. The method is derived from a new denoising method which is proposed in Beheshti et al. (2002). Unlike thresholding approaches the denoising method in Beheshti is based on comparison of subspaces of the basis. It compares a defined description length (DL) of the noisy data in the subspaces. We show how the estimation of the noise variance and the denoising process can be done simultaneously.","PeriodicalId":104473,"journal":{"name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2003.1201649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In the thresholding method of denoising the optimum threshold is obtained as a function of additive noise variance. In practical problems, where the variance of the noise is unknown, the first step is to estimate the noise variance. The estimated noise variance is then implemented in calculation of the optimum threshold. The current available methods of variance estimation are heuristic. Here, we provide a new method for estimation of the additive noise variance. The method is derived from a new denoising method which is proposed in Beheshti et al. (2002). Unlike thresholding approaches the denoising method in Beheshti is based on comparison of subspaces of the basis. It compares a defined description length (DL) of the noisy data in the subspaces. We show how the estimation of the noise variance and the denoising process can be done simultaneously.
信号去噪中的噪声方差
在去噪的阈值法中,将最优阈值作为加性噪声方差的函数得到。在实际问题中,当噪声的方差未知时,首先要估计噪声的方差。然后将估计的噪声方差用于计算最佳阈值。目前可用的方差估计方法是启发式的。本文提出了一种估计加性噪声方差的新方法。该方法源自Beheshti等人(2002)提出的一种新的去噪方法。与阈值方法不同,Beheshti中的去噪方法是基于基的子空间的比较。它比较子空间中噪声数据的定义描述长度(DL)。我们展示了如何估计噪声方差和去噪过程可以同时进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信