{"title":"A Low-complexity Neural BP Decoder with Network Pruning","authors":"Seokju Han, J. Ha","doi":"10.1109/ICTC49870.2020.9289525","DOIUrl":null,"url":null,"abstract":"Existing deep learning-based channel decoders, called neural decoders, suffer from demands on an excessively high computational complexity and large memory resource. In this work, we will show that a low-complexity neural belief propagation (BP) decoder can be constructed by utilizing the network pruning technique. In particular, it will be shown that by removing unimportant edges in a neural BP decoder, a significant complexity gain can be achieved. When the decoding complexity is fixed, the proposed decoder highly achieves a notable performance improvement as compared to the existing neural BP decoder, which will be demonstrated with performance evaluations. In addition, we conduct a preliminary study investigating the structure of pruned edges, which we believe provides some clues of a general design framework of practical neural BP decoders.","PeriodicalId":282243,"journal":{"name":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC49870.2020.9289525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Existing deep learning-based channel decoders, called neural decoders, suffer from demands on an excessively high computational complexity and large memory resource. In this work, we will show that a low-complexity neural belief propagation (BP) decoder can be constructed by utilizing the network pruning technique. In particular, it will be shown that by removing unimportant edges in a neural BP decoder, a significant complexity gain can be achieved. When the decoding complexity is fixed, the proposed decoder highly achieves a notable performance improvement as compared to the existing neural BP decoder, which will be demonstrated with performance evaluations. In addition, we conduct a preliminary study investigating the structure of pruned edges, which we believe provides some clues of a general design framework of practical neural BP decoders.