A deep learning and softmax regression fault diagnosis method for multi-level converter

Bin Xin, Tianzhen Wang, Tianhao Tang
{"title":"A deep learning and softmax regression fault diagnosis method for multi-level converter","authors":"Bin Xin, Tianzhen Wang, Tianhao Tang","doi":"10.1109/DEMPED.2017.8062370","DOIUrl":null,"url":null,"abstract":"With the single-tube and double-tube fault of seven-level converter, this paper presents a new way to learn the faults feature based on the deep neural network of sparse autoencoder. Sparse autoencoder is an unsupervised learning method, it can learn the feature information of the fault data according to training. The feature information is used to train the softmax classifier by softmax regression to realize the aim of classification. Comparing with the traditional neural network of BP neural network, the experimental results show that the method to classify the fault of seven level converter based on deep neural network of sparse autoencoder can achieve higher accuracy.","PeriodicalId":325413,"journal":{"name":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2017.8062370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

With the single-tube and double-tube fault of seven-level converter, this paper presents a new way to learn the faults feature based on the deep neural network of sparse autoencoder. Sparse autoencoder is an unsupervised learning method, it can learn the feature information of the fault data according to training. The feature information is used to train the softmax classifier by softmax regression to realize the aim of classification. Comparing with the traditional neural network of BP neural network, the experimental results show that the method to classify the fault of seven level converter based on deep neural network of sparse autoencoder can achieve higher accuracy.
一种基于深度学习和softmax的多级变换器故障诊断方法
针对七电平变换器的单管和双管故障,提出了一种基于稀疏自编码器深度神经网络的故障特征学习方法。稀疏自编码器是一种无监督学习方法,它可以根据训练学习到故障数据的特征信息。利用特征信息训练softmax分类器,通过softmax回归实现分类目的。实验结果表明,与传统的BP神经网络相比,基于稀疏自编码器深度神经网络的七电平变换器故障分类方法可以达到更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信