Byzantine-Resilient locally optimum detection using collaborative autonomous networks

B. Kailkhura, P. Ray, D. Rajan, A. Yen, P. Barnes, R. Goldhahn
{"title":"Byzantine-Resilient locally optimum detection using collaborative autonomous networks","authors":"B. Kailkhura, P. Ray, D. Rajan, A. Yen, P. Barnes, R. Goldhahn","doi":"10.1109/CAMSAP.2017.8313059","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a locally optimum detection (LOD) scheme for detecting a weak radioactive source buried in background clutter. We develop a decentralized algorithm, based on alternating direction method of multipliers (ADMM), for implementing the proposed scheme in autonomous sensor networks. Results show that algorithm performance approaches the centralized clairvoyant detection algorithm in the low SNR regime, and exhibits excellent convergence rate and scaling behavior (w.r.t. number of nodes). We also devise a low-overhead, robust ADMM algorithm for Byzantine-resilient detection, and demonstrate its robustness to data falsification attacks.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose a locally optimum detection (LOD) scheme for detecting a weak radioactive source buried in background clutter. We develop a decentralized algorithm, based on alternating direction method of multipliers (ADMM), for implementing the proposed scheme in autonomous sensor networks. Results show that algorithm performance approaches the centralized clairvoyant detection algorithm in the low SNR regime, and exhibits excellent convergence rate and scaling behavior (w.r.t. number of nodes). We also devise a low-overhead, robust ADMM algorithm for Byzantine-resilient detection, and demonstrate its robustness to data falsification attacks.
使用协作自治网络的拜占庭弹性局部最优检测
本文提出了一种局部最优检测(LOD)方案,用于检测背景杂波中的弱辐射源。我们开发了一种基于乘法器交替方向方法(ADMM)的分散算法,用于在自主传感器网络中实现所提出的方案。结果表明,该算法在低信噪比条件下的性能接近集中式透视检测算法,并表现出优异的收敛速度和缩放性能(w.r.t.节点数)。我们还设计了一种用于拜占庭弹性检测的低开销,鲁棒的ADMM算法,并证明了其对数据伪造攻击的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信