Static magnetic fields in vacuum

J. Pierrus
{"title":"Static magnetic fields in vacuum","authors":"J. Pierrus","doi":"10.1093/OSO/9780198821915.003.0004","DOIUrl":null,"url":null,"abstract":"Wherever possible, an attempt has been made to structure this chapter along similar lines to Chapter 2 (its electrostatic counterpart). Maxwell’s magnetostatic equations are derived from Ampere’s experimental law of force. These results, along with the Biot–Savart law, are then used to determine the magnetic field B arising from various stationary current distributions. The magnetic vector potential A emerges naturally during our discussion, and it features prominently in questions throughout the remainder of this book. Also mentioned is the magnetic scalar potential. Although of lesser theoretical significance than the vector potential, the magnetic scalar potential can sometimes be an effective problem-solving device. Some examples of this are provided. This chapter concludes by making a multipole expansion of A and introducing the magnetic multipole moments of a bounded distribution of stationary currents. Several applications involving magnetic dipoles and magnetic quadrupoles are given.","PeriodicalId":184566,"journal":{"name":"Solved Problems in Classical Electromagnetism","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solved Problems in Classical Electromagnetism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198821915.003.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wherever possible, an attempt has been made to structure this chapter along similar lines to Chapter 2 (its electrostatic counterpart). Maxwell’s magnetostatic equations are derived from Ampere’s experimental law of force. These results, along with the Biot–Savart law, are then used to determine the magnetic field B arising from various stationary current distributions. The magnetic vector potential A emerges naturally during our discussion, and it features prominently in questions throughout the remainder of this book. Also mentioned is the magnetic scalar potential. Although of lesser theoretical significance than the vector potential, the magnetic scalar potential can sometimes be an effective problem-solving device. Some examples of this are provided. This chapter concludes by making a multipole expansion of A and introducing the magnetic multipole moments of a bounded distribution of stationary currents. Several applications involving magnetic dipoles and magnetic quadrupoles are given.
真空中的静态磁场
在可能的情况下,本章的结构与第2章(其静电对应部分)相似。麦克斯韦的静磁方程是从安培的实验力定律推导出来的。这些结果,连同比奥-萨瓦定律,然后被用来确定由各种固定电流分布产生的磁场B。磁矢量势A在我们的讨论中自然出现,它在本书其余部分的问题中占有突出地位。也提到了磁标量势。虽然理论意义不如矢量势,但磁标量势有时可以成为解决问题的有效手段。这里提供了一些示例。本章最后对a进行了多极展开,并引入了固定电流有界分布的磁多极矩。给出了涉及磁偶极子和磁四极子的几个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信