Ablation Study of a Person Re-Identification on a Mobile Robot Using a Depth Camera

S. Flores, J. Jost
{"title":"Ablation Study of a Person Re-Identification on a Mobile Robot Using a Depth Camera","authors":"S. Flores, J. Jost","doi":"10.1109/isie51582.2022.9831503","DOIUrl":null,"url":null,"abstract":"In this paper, we describe an ablation study for a person re-identification API on a mobile robot, for a closed-world setting, using only the IR gray value image of a depth camera. Previously, we have trained the state-of-the-art neural network for person re-identification with common parameters and methods. The resulting real-time application reached as closed-world setting a rank-1-accuracy of 94.78% and a mAP of 68.16%. Now, we focused on increasing the accuracy by removing and adjusting the image processing pipeline of our dataset. By these adjustments, we have reached a rank-1-accuracy of 98.56% and a mAP of 79.05%.","PeriodicalId":194172,"journal":{"name":"2022 IEEE 31st International Symposium on Industrial Electronics (ISIE)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 31st International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isie51582.2022.9831503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we describe an ablation study for a person re-identification API on a mobile robot, for a closed-world setting, using only the IR gray value image of a depth camera. Previously, we have trained the state-of-the-art neural network for person re-identification with common parameters and methods. The resulting real-time application reached as closed-world setting a rank-1-accuracy of 94.78% and a mAP of 68.16%. Now, we focused on increasing the accuracy by removing and adjusting the image processing pipeline of our dataset. By these adjustments, we have reached a rank-1-accuracy of 98.56% and a mAP of 79.05%.
基于深度相机的移动机器人人体再识别消融研究
在本文中,我们描述了在封闭世界环境下,仅使用深度相机的红外灰度值图像,在移动机器人上进行人员再识别API的烧消研究。在此之前,我们已经用常用的参数和方法训练了最先进的神经网络来进行人的再识别。由此产生的实时应用程序在封闭世界设置下达到了94.78%的rank-1精度和68.16%的mAP。现在,我们专注于通过去除和调整数据集的图像处理管道来提高精度。通过这些调整,我们达到了98.56%的rank-1精度和79.05%的mAP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信