A ranking-based lung nodule image classification method using unlabeled image knowledge

Fan Zhang, Yang Song, Weidong (Tom) Cai, Yun Zhou, M. Fulham, S. Eberl, S. Shan, D. Feng
{"title":"A ranking-based lung nodule image classification method using unlabeled image knowledge","authors":"Fan Zhang, Yang Song, Weidong (Tom) Cai, Yun Zhou, M. Fulham, S. Eberl, S. Shan, D. Feng","doi":"10.1109/ISBI.2014.6868129","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel semi-supervised classification method for four types of lung nodules, i.e., well-circumscribed, vascularized, juxta-pleural and pleural-tail, in low dose computed tomography (LDCT) scans. The proposed method focuses on classifier design by incorporating the knowledge extracted from both training and testing datasets, and contains two stages: (1) bipartite graph construction, which presents the direct similar relationship between labeled and unlabeled images, (2) ranking score calculation, which computes the possibility of unlabeled images for each of the given four types. Our proposed method is evaluated on a publicly available dataset and clearly demonstrates its promising classification performance.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper, we propose a novel semi-supervised classification method for four types of lung nodules, i.e., well-circumscribed, vascularized, juxta-pleural and pleural-tail, in low dose computed tomography (LDCT) scans. The proposed method focuses on classifier design by incorporating the knowledge extracted from both training and testing datasets, and contains two stages: (1) bipartite graph construction, which presents the direct similar relationship between labeled and unlabeled images, (2) ranking score calculation, which computes the possibility of unlabeled images for each of the given four types. Our proposed method is evaluated on a publicly available dataset and clearly demonstrates its promising classification performance.
基于无标记图像知识的分级肺结节图像分类方法
在本文中,我们提出了一种新的半监督分类方法,用于低剂量计算机断层扫描(LDCT)中四种类型的肺结节,即边界良好的,血管化的,胸膜旁的和胸膜尾的。该方法将从训练和测试数据集中提取的知识结合起来,专注于分类器的设计,并包含两个阶段:(1)二部图的构建,它表示标记和未标记图像之间的直接相似关系;(2)排名分数的计算,它计算给定四种类型中每一种图像未标记的可能性。我们提出的方法在一个公开可用的数据集上进行了评估,并清楚地展示了其有希望的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信