An integrated associative structure for vision

A. Cerrato, G. Parodi, R. Zunino
{"title":"An integrated associative structure for vision","authors":"A. Cerrato, G. Parodi, R. Zunino","doi":"10.1109/IJCNN.1992.227159","DOIUrl":null,"url":null,"abstract":"An associative architecture for mapping input images into a set of predefined bit patterns (messages) is described. The running general methodology exploits memory content-addressability to perform robust vision tasks. A noiselike coding associative memory works out message samples from input images, while a superimposed feedforward network filters out memory crosstalk and provides clean messages patterns. The integrated structure combines the generalization power of neural networks with the massive processing capability of associative memories. Tests have involved image sets which stress the system's discrimination efficacy. Experimental results confirmed the system's robustness and flexibility. The overall structure can be regarded as a general domain-independent method for visual stimulus-response mapping.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An associative architecture for mapping input images into a set of predefined bit patterns (messages) is described. The running general methodology exploits memory content-addressability to perform robust vision tasks. A noiselike coding associative memory works out message samples from input images, while a superimposed feedforward network filters out memory crosstalk and provides clean messages patterns. The integrated structure combines the generalization power of neural networks with the massive processing capability of associative memories. Tests have involved image sets which stress the system's discrimination efficacy. Experimental results confirmed the system's robustness and flexibility. The overall structure can be regarded as a general domain-independent method for visual stimulus-response mapping.<>
视觉的综合联想结构
描述了将输入图像映射到一组预定义的位模式(消息)的关联体系结构。运行通用方法利用内存内容寻址能力来执行稳健的视觉任务。类噪声编码联想记忆从输入图像中提取信息样本,而叠加前馈网络过滤掉记忆串扰并提供清晰的信息模式。这种集成结构结合了神经网络的泛化能力和联想记忆的海量处理能力。测试涉及图像集,这些图像集强调了系统的识别功效。实验结果验证了该系统的鲁棒性和灵活性。整体结构可视为视觉刺激-反应映射的一般领域无关方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信