{"title":"Linear approximations to AC power flow in rectangular coordinates","authors":"S. Dhople, Swaroop S. Guggilam, Y. Chen","doi":"10.1109/ALLERTON.2015.7447006","DOIUrl":null,"url":null,"abstract":"This paper explores solutions to linearized power-flow equations with bus-voltage phasors represented in rectangular coordinates. The key idea is to solve for complex-valued perturbations around a nominal voltage profile from a set of linear equations that are obtained by neglecting quadratic terms in the original nonlinear power-flow equations. We prove that for lossless networks, the voltage profile where the real part of the perturbation is suppressed satisfies active-power balance in the original nonlinear system of equations. This result motivates the development of approximate solutions that improve over conventional DC power-flow approximations, since the model includes ZIP loads. For distribution networks that only contain ZIP loads in addition to a slack bus, we recover a linear relationship between the approximate voltage profile and the constant-current component of the loads and the nodal active-and reactive-power injections.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88
Abstract
This paper explores solutions to linearized power-flow equations with bus-voltage phasors represented in rectangular coordinates. The key idea is to solve for complex-valued perturbations around a nominal voltage profile from a set of linear equations that are obtained by neglecting quadratic terms in the original nonlinear power-flow equations. We prove that for lossless networks, the voltage profile where the real part of the perturbation is suppressed satisfies active-power balance in the original nonlinear system of equations. This result motivates the development of approximate solutions that improve over conventional DC power-flow approximations, since the model includes ZIP loads. For distribution networks that only contain ZIP loads in addition to a slack bus, we recover a linear relationship between the approximate voltage profile and the constant-current component of the loads and the nodal active-and reactive-power injections.