{"title":"GreenSim: A Network Simulator for Comprehensively Validating and Evaluating New Machine Learning Techniques for Network Structural Inference","authors":"C. Fogelberg, V. Palade","doi":"10.1109/ICTAI.2010.105","DOIUrl":null,"url":null,"abstract":"Networks are very important in many fields of machine learning research. Within networks research, inferring the structure of unknown networks is often a key problem; e.g. of genetic regulatory networks. However, there are very few well-known biological networks, and good simulation is essential for validating and evaluating novel structural inference techniques. Further, the importance of large, genome-wide structural inference is increasingly recognised, but there does not appear to be a good simulator available for large networks. This paper presents GreenSim, a simulator that helps address this gap. GreenSim automatically generates large, genome-size networks with more biologically realistic structural characteristics and 2nd-order non-linear regulatory functions. The simulator itself and the novel method used for generating a network structure with appropriate in- and out-degree distributions may also generalise easily to other types of network. GreenSim is available online at: http://syntilect.com/cgf/pubs:software","PeriodicalId":141778,"journal":{"name":"2010 22nd IEEE International Conference on Tools with Artificial Intelligence","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 22nd IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2010.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Networks are very important in many fields of machine learning research. Within networks research, inferring the structure of unknown networks is often a key problem; e.g. of genetic regulatory networks. However, there are very few well-known biological networks, and good simulation is essential for validating and evaluating novel structural inference techniques. Further, the importance of large, genome-wide structural inference is increasingly recognised, but there does not appear to be a good simulator available for large networks. This paper presents GreenSim, a simulator that helps address this gap. GreenSim automatically generates large, genome-size networks with more biologically realistic structural characteristics and 2nd-order non-linear regulatory functions. The simulator itself and the novel method used for generating a network structure with appropriate in- and out-degree distributions may also generalise easily to other types of network. GreenSim is available online at: http://syntilect.com/cgf/pubs:software