Classification of grasping tasks based on EEG-EMG coherence

Giulia Cisotto, A. V. Guglielmi, L. Badia, A. Zanella
{"title":"Classification of grasping tasks based on EEG-EMG coherence","authors":"Giulia Cisotto, A. V. Guglielmi, L. Badia, A. Zanella","doi":"10.1109/HealthCom.2018.8531140","DOIUrl":null,"url":null,"abstract":"This work presents an innovative application of the well-known concept of cortico-muscular coherence for the classification of various motor tasks, i.e., grasps of different kinds of objects. Our approach can classify objects with different weights (motor-related features) and different surface frictions (haptics-related features) with high accuracy (over 0.8). The outcomes presented here provide information about the synchronization existing between the brain and the muscles during specific activities; thus, this may represent a new effective way to perform activity recognition.","PeriodicalId":232709,"journal":{"name":"2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2018.8531140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This work presents an innovative application of the well-known concept of cortico-muscular coherence for the classification of various motor tasks, i.e., grasps of different kinds of objects. Our approach can classify objects with different weights (motor-related features) and different surface frictions (haptics-related features) with high accuracy (over 0.8). The outcomes presented here provide information about the synchronization existing between the brain and the muscles during specific activities; thus, this may represent a new effective way to perform activity recognition.
基于EEG-EMG一致性的抓取任务分类
这项工作提出了一个众所周知的皮质-肌肉一致性概念的创新应用,用于各种运动任务的分类,即掌握不同种类的物体。我们的方法可以对不同权重(运动相关特征)和不同表面摩擦(触觉相关特征)的物体进行分类,准确率很高(超过0.8)。这里提出的结果提供了在特定活动中大脑和肌肉之间存在同步的信息;因此,这可能是一种新的有效的活动识别方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信