Giulia Cisotto, A. V. Guglielmi, L. Badia, A. Zanella
{"title":"Classification of grasping tasks based on EEG-EMG coherence","authors":"Giulia Cisotto, A. V. Guglielmi, L. Badia, A. Zanella","doi":"10.1109/HealthCom.2018.8531140","DOIUrl":null,"url":null,"abstract":"This work presents an innovative application of the well-known concept of cortico-muscular coherence for the classification of various motor tasks, i.e., grasps of different kinds of objects. Our approach can classify objects with different weights (motor-related features) and different surface frictions (haptics-related features) with high accuracy (over 0.8). The outcomes presented here provide information about the synchronization existing between the brain and the muscles during specific activities; thus, this may represent a new effective way to perform activity recognition.","PeriodicalId":232709,"journal":{"name":"2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2018.8531140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
This work presents an innovative application of the well-known concept of cortico-muscular coherence for the classification of various motor tasks, i.e., grasps of different kinds of objects. Our approach can classify objects with different weights (motor-related features) and different surface frictions (haptics-related features) with high accuracy (over 0.8). The outcomes presented here provide information about the synchronization existing between the brain and the muscles during specific activities; thus, this may represent a new effective way to perform activity recognition.