High threshold voltage p-gate GaN transistors

E. Erofeev, V. Kagadei, A. Kazimirov, I. V. Fedin
{"title":"High threshold voltage p-gate GaN transistors","authors":"E. Erofeev, V. Kagadei, A. Kazimirov, I. V. Fedin","doi":"10.1109/SIBCON.2015.7147055","DOIUrl":null,"url":null,"abstract":"AlGaN/GaN HEMT is one of attractive candidates for next generation high power devices because of high carrier mobility in 2DEG channels and high breakdown voltage due high critical electric field. In order to apply the AlGaN/GaN HEMTs for power switching applications the normally off operation is required. Enhancement type behavior of GaN HEMT transistors is obtained by using p-type Mg-doped GaN gate structures. The optimized epitaxial designs enable threshold voltage close to +2V. In present work, it is shown that atomic hydrogen treatment of the Mg doped p-GaN before gate metal evaporation can increase the threshold voltage up to +3.5V. It can be caused by the hydrogen-induced dipole layer formation at the p-GaN semiconductor interface after atomic hydrogen treatment. Further increase of treatment time lead to reduce the threshold voltage by form neutral complexes. Neutral complexes reduce the Mg doping level of p-GaN layer. There was no visible parameters degradation after thermal annealing at T = 300 °C for t = 30 min in vacuum environment. It can be caused by the formation thermally stable Mg-H complexes in the p-GaN layer after hydrogenation.","PeriodicalId":395729,"journal":{"name":"2015 International Siberian Conference on Control and Communications (SIBCON)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Siberian Conference on Control and Communications (SIBCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON.2015.7147055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

AlGaN/GaN HEMT is one of attractive candidates for next generation high power devices because of high carrier mobility in 2DEG channels and high breakdown voltage due high critical electric field. In order to apply the AlGaN/GaN HEMTs for power switching applications the normally off operation is required. Enhancement type behavior of GaN HEMT transistors is obtained by using p-type Mg-doped GaN gate structures. The optimized epitaxial designs enable threshold voltage close to +2V. In present work, it is shown that atomic hydrogen treatment of the Mg doped p-GaN before gate metal evaporation can increase the threshold voltage up to +3.5V. It can be caused by the hydrogen-induced dipole layer formation at the p-GaN semiconductor interface after atomic hydrogen treatment. Further increase of treatment time lead to reduce the threshold voltage by form neutral complexes. Neutral complexes reduce the Mg doping level of p-GaN layer. There was no visible parameters degradation after thermal annealing at T = 300 °C for t = 30 min in vacuum environment. It can be caused by the formation thermally stable Mg-H complexes in the p-GaN layer after hydrogenation.
高阈值电压p栅GaN晶体管
由于在2DEG通道中具有高载流子迁移率和高临界电场导致的高击穿电压,AlGaN/GaN HEMT是下一代高功率器件的有吸引力的候选者之一。为了将AlGaN/GaN hemt应用于电源开关应用,需要正常关闭操作。采用p型掺镁GaN栅极结构获得了GaN HEMT晶体管的增强型性能。优化的外延设计使阈值电压接近+2V。本研究表明,在栅极金属蒸发前对掺Mg的p-GaN进行原子氢处理可使阈值电压提高到+3.5V。它可以由原子氢处理后在p-GaN半导体界面上形成氢致偶极子层引起。进一步延长处理时间,可通过形成中性络合物降低阈值电压。中性配合物降低了p-GaN层的Mg掺杂水平。在真空环境下,温度为300°C,温度为30 min,热处理后无明显的参数退化。这可能是由于氢化后在p-GaN层中形成热稳定的Mg-H配合物所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信