Improving adaptive skin color segmentation by incorporating results from face detection

J. Fritsch, S. Lang, A. Kleinehagenbrock, G. Fink, G. Sagerer
{"title":"Improving adaptive skin color segmentation by incorporating results from face detection","authors":"J. Fritsch, S. Lang, A. Kleinehagenbrock, G. Fink, G. Sagerer","doi":"10.1109/ROMAN.2002.1045645","DOIUrl":null,"url":null,"abstract":"The visual tracking of human faces is a basic functionality needed for human-machine interfaces. This paper describes an approach that explores the combined use of adaptive skin color segmentation and face detection for improved face tracking on a mobile robot. To cope with inhomogeneous lighting within a single image, the color of each tracked image region is modeled with an individual, unimodal Gaussian. Face detection is performed locally on all segmented skin-colored regions. If a face is detected, the appropriate color model is updated with the image pixels in an elliptical area around the face position. Updating is restricted to pixels that are contained in a global skin color distribution obtained off-line. The presented method allows us to track faces that undergo changes in lighting conditions while at the same time providing information about the attention of the user, i.e. whether the user looks at the robot. This forms the basis for developing more sophisticated human-machine interfaces capable of dealing with unrestricted environments.","PeriodicalId":222409,"journal":{"name":"Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Communication","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2002.1045645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

Abstract

The visual tracking of human faces is a basic functionality needed for human-machine interfaces. This paper describes an approach that explores the combined use of adaptive skin color segmentation and face detection for improved face tracking on a mobile robot. To cope with inhomogeneous lighting within a single image, the color of each tracked image region is modeled with an individual, unimodal Gaussian. Face detection is performed locally on all segmented skin-colored regions. If a face is detected, the appropriate color model is updated with the image pixels in an elliptical area around the face position. Updating is restricted to pixels that are contained in a global skin color distribution obtained off-line. The presented method allows us to track faces that undergo changes in lighting conditions while at the same time providing information about the attention of the user, i.e. whether the user looks at the robot. This forms the basis for developing more sophisticated human-machine interfaces capable of dealing with unrestricted environments.
结合人脸检测结果改进自适应肤色分割
人脸视觉跟踪是人机界面的一项基本功能。本文描述了一种探索自适应肤色分割和人脸检测相结合的方法,用于改进移动机器人的人脸跟踪。为了处理单幅图像中的不均匀光照,每个跟踪图像区域的颜色都用单个的单峰高斯模型建模。人脸检测在所有分割的肤色区域进行局部检测。如果检测到人脸,则使用人脸位置周围椭圆区域中的图像像素更新相应的颜色模型。更新仅限于离线获得的全局皮肤颜色分布中包含的像素。所提出的方法使我们能够跟踪在光照条件下发生变化的人脸,同时提供有关用户注意力的信息,即用户是否在看机器人。这为开发能够处理不受限制环境的更复杂的人机界面奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信