Efficient job scheduling in cloud computing based on genetic algorithm

Shirin Hosseinzadeh Sahraei, Mohammad Mansour Riahi Kashani, J. Rezazadeh, R. Farahbakhsh
{"title":"Efficient job scheduling in cloud computing based on genetic algorithm","authors":"Shirin Hosseinzadeh Sahraei, Mohammad Mansour Riahi Kashani, J. Rezazadeh, R. Farahbakhsh","doi":"10.1504/IJCNDS.2019.10020186","DOIUrl":null,"url":null,"abstract":"Scheduling in cloud is one of the challenging issues in resource management topic where the main question is how to manage time and cost in an optimised way. This study tackles the mentioned problem by managing time and cost through a genetic-based algorithm. The primary goal of this study is to manage jobs in a shorter time with lower cost and higher utilisation. Toward that end, we leverage the genetic algorithm solutions and a new model is proposed where jobs are created in genetic format. In the evaluation part of the model, different scenarios based on taking different fitness functions and format of the population are considered. We have analysed makespan, cost and utilisation in comparison to other two existing scheduling models (MAX-MIN and MIN-MIN). The results show considerable improvement in the cost, makespan and utilisation.","PeriodicalId":209177,"journal":{"name":"Int. J. Commun. Networks Distributed Syst.","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Commun. Networks Distributed Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCNDS.2019.10020186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Scheduling in cloud is one of the challenging issues in resource management topic where the main question is how to manage time and cost in an optimised way. This study tackles the mentioned problem by managing time and cost through a genetic-based algorithm. The primary goal of this study is to manage jobs in a shorter time with lower cost and higher utilisation. Toward that end, we leverage the genetic algorithm solutions and a new model is proposed where jobs are created in genetic format. In the evaluation part of the model, different scenarios based on taking different fitness functions and format of the population are considered. We have analysed makespan, cost and utilisation in comparison to other two existing scheduling models (MAX-MIN and MIN-MIN). The results show considerable improvement in the cost, makespan and utilisation.
基于遗传算法的云计算高效作业调度
云中的调度是资源管理主题中具有挑战性的问题之一,其主要问题是如何以优化的方式管理时间和成本。本研究通过一种基于遗传的算法来管理时间和成本,解决了上述问题。本研究的主要目标是在更短的时间内以更低的成本和更高的利用率管理工作。为此,我们利用遗传算法解决方案,并提出了一个新的模型,其中以遗传格式创建工作。在模型的评估部分,考虑了基于不同适应度函数和总体格式的不同场景。与其他两种现有的调度模型(MAX-MIN和MIN-MIN)相比,我们分析了完工时间、成本和利用率。结果表明,在成本、完工时间和利用率方面有了相当大的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信