I. Caragiannis, A. Fanelli, N. Gravin, Alexander Skopalik
{"title":"Efficient Computation of Approximate Pure Nash Equilibria in Congestion Games","authors":"I. Caragiannis, A. Fanelli, N. Gravin, Alexander Skopalik","doi":"10.1109/FOCS.2011.50","DOIUrl":null,"url":null,"abstract":"Congestion games constitute an important class of games in which computing an exact or even approximate pure Nash equilibrium is in general {\\sf PLS}-complete. We present a surprisingly simple polynomial-time algorithm that computes $O(1)$-approximate Nash equilibria in these games. In particular, for congestion games with linear latency functions, our algorithm computes $(2+\\epsilon)$-approximate pure Nash equilibria in time polynomial in the number of players, the number of resources and $1/\\epsilon$. It also applies to games with polynomial latency functions with constant maximum degree $d$; there, the approximation guarantee is $d^{O(d)}$. The algorithm essentially identifies a polynomially long sequence of best-response moves that lead to an approximate equilibrium, the existence of such short sequences is interesting in itself. These are the first positive algorithmic results for approximate equilibria in non-symmetric congestion games. We strengthen them further by proving that, for congestion games that deviate from our mild assumptions, computing $\\rho$-approximate equilibria is {\\sf PLS}-complete for any polynomial-time computable $\\rho$.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54
Abstract
Congestion games constitute an important class of games in which computing an exact or even approximate pure Nash equilibrium is in general {\sf PLS}-complete. We present a surprisingly simple polynomial-time algorithm that computes $O(1)$-approximate Nash equilibria in these games. In particular, for congestion games with linear latency functions, our algorithm computes $(2+\epsilon)$-approximate pure Nash equilibria in time polynomial in the number of players, the number of resources and $1/\epsilon$. It also applies to games with polynomial latency functions with constant maximum degree $d$; there, the approximation guarantee is $d^{O(d)}$. The algorithm essentially identifies a polynomially long sequence of best-response moves that lead to an approximate equilibrium, the existence of such short sequences is interesting in itself. These are the first positive algorithmic results for approximate equilibria in non-symmetric congestion games. We strengthen them further by proving that, for congestion games that deviate from our mild assumptions, computing $\rho$-approximate equilibria is {\sf PLS}-complete for any polynomial-time computable $\rho$.