{"title":"Memetic algorithms for Cross-domain Heuristic Search","authors":"E. Özcan, Shahriar Asta, Cevriye Altintas","doi":"10.1109/UKCI.2013.6651303","DOIUrl":null,"url":null,"abstract":"Hyper-heuristic Flexible Framework (HyFlex) is an interface designed to enable the development, testing and comparison of iterative general-purpose heuristic search algorithms, particularly selection hyper-heuristics. A selection hyper-heuristic is a high level methodology that coordinates the interaction of a fixed set of low level heuristics (operators) during the search process. The Java implementation of HyFlex along with different problem domains was recently used in a competition, referred to as Cross-domain Heuristic Search Challenge (CHeSC2011). CHeSC2011 sought for the best selection hyper-heuristic with the best median performance over a set of instances from six different problem domains. Each problem domain implementation contained four different types of operators, namely mutation, ruin-recreate, hill climbing and crossover. CHeSC2011 including the competing hyper-heuristic methods currently serves as a benchmark for hyper-heuristic research. Considering the type of the operators implemented under the HyFlex framework, CHeSC2011 could also be used as a benchmark to empirically compare the performance of appropriate variants of the evolutionary computation methods across a variety of problem domains for discrete optimisation. In this study, we investigate the performance and generality level of generic steady-state and transgenerational memetic algorithms which hybridize genetic algorithms with hill climbing across six problem domains of the CHeSC2011 benchmark.","PeriodicalId":106191,"journal":{"name":"2013 13th UK Workshop on Computational Intelligence (UKCI)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2013.6651303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Hyper-heuristic Flexible Framework (HyFlex) is an interface designed to enable the development, testing and comparison of iterative general-purpose heuristic search algorithms, particularly selection hyper-heuristics. A selection hyper-heuristic is a high level methodology that coordinates the interaction of a fixed set of low level heuristics (operators) during the search process. The Java implementation of HyFlex along with different problem domains was recently used in a competition, referred to as Cross-domain Heuristic Search Challenge (CHeSC2011). CHeSC2011 sought for the best selection hyper-heuristic with the best median performance over a set of instances from six different problem domains. Each problem domain implementation contained four different types of operators, namely mutation, ruin-recreate, hill climbing and crossover. CHeSC2011 including the competing hyper-heuristic methods currently serves as a benchmark for hyper-heuristic research. Considering the type of the operators implemented under the HyFlex framework, CHeSC2011 could also be used as a benchmark to empirically compare the performance of appropriate variants of the evolutionary computation methods across a variety of problem domains for discrete optimisation. In this study, we investigate the performance and generality level of generic steady-state and transgenerational memetic algorithms which hybridize genetic algorithms with hill climbing across six problem domains of the CHeSC2011 benchmark.