Radar imaging using 2D adaptive non-parametric extrapolation and autoregressive modeling

C. Chen, G. Thomas, B. Flores, S. Cabrera
{"title":"Radar imaging using 2D adaptive non-parametric extrapolation and autoregressive modeling","authors":"C. Chen, G. Thomas, B. Flores, S. Cabrera","doi":"10.1109/IAI.1994.336682","DOIUrl":null,"url":null,"abstract":"Two approaches are described to obtain range-Doppler images using either adaptive weighted norm extrapolation or autoregressive modeling. These approaches are used to extend two dimensional data in the frequency-space aperture plane. The data collection process is viewed as sampling limited to a two dimensional window area, corresponding to a set of frequency bounds and observation angles. Image formation is achieved by Fourier processing of the data. The effect of extending this observation window is to increase the resolution in both range and Doppler. The improvement in resolution makes it possible to observe closely-spaced point scatterers. Examples using these data extrapolation methods are presented.<<ETX>>","PeriodicalId":438137,"journal":{"name":"Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.1994.336682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two approaches are described to obtain range-Doppler images using either adaptive weighted norm extrapolation or autoregressive modeling. These approaches are used to extend two dimensional data in the frequency-space aperture plane. The data collection process is viewed as sampling limited to a two dimensional window area, corresponding to a set of frequency bounds and observation angles. Image formation is achieved by Fourier processing of the data. The effect of extending this observation window is to increase the resolution in both range and Doppler. The improvement in resolution makes it possible to observe closely-spaced point scatterers. Examples using these data extrapolation methods are presented.<>
雷达成像采用二维自适应非参数外推和自回归建模
描述了两种方法来获得距离-多普勒图像使用自适应加权范数外推或自回归建模。这些方法用于在频率空间孔径平面上扩展二维数据。数据收集过程被看作是采样限制在一个二维窗口区域,对应于一组频率边界和观测角度。图像的形成是通过数据的傅里叶处理实现的。延长观测窗口的效果是增加距离和多普勒的分辨率。分辨率的提高使观测近距离点散射体成为可能。给出了使用这些数据外推方法的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信