E. B. Nejad, Carla Silva, A. Rodrigues, A. Jorge, I. Dutra
{"title":"AutoSW: a new automated sliding window-based change point detection method for sensor data","authors":"E. B. Nejad, Carla Silva, A. Rodrigues, A. Jorge, I. Dutra","doi":"10.1109/IAICT55358.2022.9887400","DOIUrl":null,"url":null,"abstract":"Change point detection methods try to find any sudden changes in the patterns and features of a given time series. In this paper a new change point detection method is presented, where the window width is automatically calculated. The proposed algorithm, AutoSW, is based on a Sliding Window search method of the Python ruptures package and uses a subset of statistical concepts to compute a possibly optimal window width. The proposed algorithm is compared with some other popular methods such as PELT using different real-world and synthetic time series. Results show that AutoSW can perform better than PELT producing a better set of change points in the time series tested.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Change point detection methods try to find any sudden changes in the patterns and features of a given time series. In this paper a new change point detection method is presented, where the window width is automatically calculated. The proposed algorithm, AutoSW, is based on a Sliding Window search method of the Python ruptures package and uses a subset of statistical concepts to compute a possibly optimal window width. The proposed algorithm is compared with some other popular methods such as PELT using different real-world and synthetic time series. Results show that AutoSW can perform better than PELT producing a better set of change points in the time series tested.