AutoSW: a new automated sliding window-based change point detection method for sensor data

E. B. Nejad, Carla Silva, A. Rodrigues, A. Jorge, I. Dutra
{"title":"AutoSW: a new automated sliding window-based change point detection method for sensor data","authors":"E. B. Nejad, Carla Silva, A. Rodrigues, A. Jorge, I. Dutra","doi":"10.1109/IAICT55358.2022.9887400","DOIUrl":null,"url":null,"abstract":"Change point detection methods try to find any sudden changes in the patterns and features of a given time series. In this paper a new change point detection method is presented, where the window width is automatically calculated. The proposed algorithm, AutoSW, is based on a Sliding Window search method of the Python ruptures package and uses a subset of statistical concepts to compute a possibly optimal window width. The proposed algorithm is compared with some other popular methods such as PELT using different real-world and synthetic time series. Results show that AutoSW can perform better than PELT producing a better set of change points in the time series tested.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Change point detection methods try to find any sudden changes in the patterns and features of a given time series. In this paper a new change point detection method is presented, where the window width is automatically calculated. The proposed algorithm, AutoSW, is based on a Sliding Window search method of the Python ruptures package and uses a subset of statistical concepts to compute a possibly optimal window width. The proposed algorithm is compared with some other popular methods such as PELT using different real-world and synthetic time series. Results show that AutoSW can perform better than PELT producing a better set of change points in the time series tested.
AutoSW:一种新的基于自动滑动窗口的传感器数据变化点检测方法
变化点检测方法试图在给定时间序列的模式和特征中发现任何突然变化。本文提出了一种自动计算窗宽的变化点检测方法。提出的算法AutoSW基于Python破裂包的滑动窗口搜索方法,并使用统计概念的子集来计算可能的最佳窗口宽度。采用不同的真实时间序列和合成时间序列,将该算法与PELT等常用方法进行了比较。结果表明,在测试的时间序列中,AutoSW可以比PELT产生更好的变化点集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信