Efficient Converting of Large Sparse Matrices to Quadtree Format

I. Šimeček, D. Langr, Jan Trdlicka
{"title":"Efficient Converting of Large Sparse Matrices to Quadtree Format","authors":"I. Šimeček, D. Langr, Jan Trdlicka","doi":"10.1109/SYNASC.2014.25","DOIUrl":null,"url":null,"abstract":"Computations with sparse matrices are widespread in scientific projects. Used data format affects strongly the performance and also the space-efficiency. Commonly used storage formats (such as COO or CSR) are not suitable neither for some numerical algebra operations (e.g., The sparse matrix-vector multiplication) due to the required indirect addressing nor for I/O file operations with sparse matrices due to their high space complexities. In our previous papers, we prove that the idea of using the quad tree for these purposes is viable. In this paper, we present a completely new algorithm based on bottom-up approach for the converting matrices from common storage formats to the quad tree format. We derive the asymptotic complexity of our new algorithm, design the parallel variant of the classical and the new algorithm, and discuss their performance.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Computations with sparse matrices are widespread in scientific projects. Used data format affects strongly the performance and also the space-efficiency. Commonly used storage formats (such as COO or CSR) are not suitable neither for some numerical algebra operations (e.g., The sparse matrix-vector multiplication) due to the required indirect addressing nor for I/O file operations with sparse matrices due to their high space complexities. In our previous papers, we prove that the idea of using the quad tree for these purposes is viable. In this paper, we present a completely new algorithm based on bottom-up approach for the converting matrices from common storage formats to the quad tree format. We derive the asymptotic complexity of our new algorithm, design the parallel variant of the classical and the new algorithm, and discuss their performance.
大型稀疏矩阵到四叉树格式的有效转换
稀疏矩阵计算在科学项目中广泛应用。所使用的数据格式对性能和空间效率影响很大。常用的存储格式(如COO或CSR)既不适合一些数值代数操作(如稀疏矩阵-向量乘法),因为需要间接寻址,也不适合使用稀疏矩阵的I/O文件操作,因为它们的空间复杂性很高。在我们之前的论文中,我们证明了将四叉树用于这些目的的想法是可行的。在本文中,我们提出了一种基于自底向上的方法将矩阵从普通存储格式转换为四叉树格式的全新算法。我们推导了新算法的渐近复杂度,设计了经典算法和新算法的并行变体,并讨论了它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信