Improving visual SLAM accuracy through deliberate camera oscillations

M. Heshmat, M. Abdellatif, Hossam S. Abbas
{"title":"Improving visual SLAM accuracy through deliberate camera oscillations","authors":"M. Heshmat, M. Abdellatif, Hossam S. Abbas","doi":"10.1109/ROSE.2013.6698435","DOIUrl":null,"url":null,"abstract":"Visual Simultaneous Localization And Mapping, (VSLAM) algorithms exploit the observation of scene naturally-existing distinct features to infer the camera motion and build a map of a static environment. There is an increasing interest towards building efficient VSLAM algorithms mainly from computational perspectives; however, there may be insufficient clues to solve for SLAM parameters efficiently. In this paper, deliberate camera oscillations are superimposed on the camera main motion (robot motion), mostly in a lateral direction to give sufficient physical clues for the solution. Filtering methods exploit correlation to infer the motion parameters, and since oscillation introduces more local changes, it can enhance the estimation by correlation. Simulation results are presented showing the effects of oscillation parameters on visual SLAM performance in different motion scenarios. The results showed significant improvement of accuracy for oscillating camera over the steady camera case, and in several cases errors are reduced to less than half its value. These simulation results can be the basis to design a real experimental system.","PeriodicalId":187001,"journal":{"name":"2013 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2013.6698435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Visual Simultaneous Localization And Mapping, (VSLAM) algorithms exploit the observation of scene naturally-existing distinct features to infer the camera motion and build a map of a static environment. There is an increasing interest towards building efficient VSLAM algorithms mainly from computational perspectives; however, there may be insufficient clues to solve for SLAM parameters efficiently. In this paper, deliberate camera oscillations are superimposed on the camera main motion (robot motion), mostly in a lateral direction to give sufficient physical clues for the solution. Filtering methods exploit correlation to infer the motion parameters, and since oscillation introduces more local changes, it can enhance the estimation by correlation. Simulation results are presented showing the effects of oscillation parameters on visual SLAM performance in different motion scenarios. The results showed significant improvement of accuracy for oscillating camera over the steady camera case, and in several cases errors are reduced to less than half its value. These simulation results can be the basis to design a real experimental system.
通过有意的相机振荡提高视觉SLAM精度
视觉同步定位和映射(VSLAM)算法利用对场景自然存在的明显特征的观察来推断相机运动并构建静态环境的地图。主要从计算角度构建高效VSLAM算法的兴趣越来越大;然而,可能没有足够的线索来有效地求解SLAM参数。在本文中,有意的相机振荡叠加在相机主运动(机器人运动)上,主要是在横向上,为解决方案提供足够的物理线索。滤波方法利用相关性来推断运动参数,由于振荡会引入更多的局部变化,因此可以通过相关性来增强估计。仿真结果显示了不同运动场景下振荡参数对视觉SLAM性能的影响。结果表明,与稳定相机相比,振荡相机的精度有了显著提高,在一些情况下,误差减少到不到其值的一半。这些仿真结果可以作为设计真实实验系统的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信