Zoning Aggregated Hypercolumns for Keyword Spotting

Giorgos Sfikas, George Retsinas, B. Gatos
{"title":"Zoning Aggregated Hypercolumns for Keyword Spotting","authors":"Giorgos Sfikas, George Retsinas, B. Gatos","doi":"10.1109/ICFHR.2016.0061","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel descriptor and method for segmentation-based keyword spotting. We introduce Zoning-Aggregated Hypercolumn features as pixel-level cues for document images. Motivated by recent research in machine vision, we use an appropriately pretrained convolutional network as a feature extraction tool. The resulting local cues are subsequently aggregated to form word-level fixed-length descriptors. Encoding is computationally inexpensive and does not require learning a separate feature generative model, in contrast to other widely used encoding methods (such as Fisher Vectors). Keyword spotting trials on machine-printed and handwritten documents show that the proposed model gives very competitive results.","PeriodicalId":194844,"journal":{"name":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2016.0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In this paper we present a novel descriptor and method for segmentation-based keyword spotting. We introduce Zoning-Aggregated Hypercolumn features as pixel-level cues for document images. Motivated by recent research in machine vision, we use an appropriately pretrained convolutional network as a feature extraction tool. The resulting local cues are subsequently aggregated to form word-level fixed-length descriptors. Encoding is computationally inexpensive and does not require learning a separate feature generative model, in contrast to other widely used encoding methods (such as Fisher Vectors). Keyword spotting trials on machine-printed and handwritten documents show that the proposed model gives very competitive results.
Zoning用于关键字定位的聚合超列
本文提出了一种新的基于分词的关键词识别描述符和方法。我们引入分区聚合超列特性作为文档图像的像素级线索。受最近机器视觉研究的启发,我们使用适当的预训练卷积网络作为特征提取工具。产生的局部线索随后被聚合成词级固定长度的描述符。与其他广泛使用的编码方法(如Fisher Vectors)相比,编码的计算成本低,不需要学习单独的特征生成模型。对机器打印和手写文档的关键词识别试验表明,所提出的模型给出了非常有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信