Uniqueness And Asymptotic Stability For The Radial Solutions Of Semilinear Elliptic Equations

S. Sanni
{"title":"Uniqueness And Asymptotic Stability For The Radial Solutions Of Semilinear Elliptic Equations","authors":"S. Sanni","doi":"10.4314/GJMAS.V7I1.21428","DOIUrl":null,"url":null,"abstract":"Less is known of the uniqueness for the radial solutions u=ur of the problem Δu + f(u + ) = 0 in R n (n>2), u (ρ) = 0, u\\'(0) = 0 besides the cases where lim r→∞ u(r)=0; and for the cases based only on the evolution of the functions f(t) and d dt f(t) t . This paper proves uniqueness for the problem D a +f(u + )=0 (r>0), u(ρ) = 0, u\\'(0) = 0 based on the assumption that f ∈C 1 ([0,∞)) and that ρ satisfies a boundedness condition. Furthermore, we prove asymptotic stability for D a +f(u + )=0 based only on the evolution of u\\'(r) and u-φ(r)f(u) . Keywords : Semilinear elliptic equations, Radial solutions, uniqueness, compactness, asymptotic stability Global Journal of Mathematical Sciences Vol. 7 (1) 2008: pp. 53-56","PeriodicalId":126381,"journal":{"name":"Global Journal of Mathematical Sciences","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/GJMAS.V7I1.21428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Less is known of the uniqueness for the radial solutions u=ur of the problem Δu + f(u + ) = 0 in R n (n>2), u (ρ) = 0, u\'(0) = 0 besides the cases where lim r→∞ u(r)=0; and for the cases based only on the evolution of the functions f(t) and d dt f(t) t . This paper proves uniqueness for the problem D a +f(u + )=0 (r>0), u(ρ) = 0, u\'(0) = 0 based on the assumption that f ∈C 1 ([0,∞)) and that ρ satisfies a boundedness condition. Furthermore, we prove asymptotic stability for D a +f(u + )=0 based only on the evolution of u\'(r) and u-φ(r)f(u) . Keywords : Semilinear elliptic equations, Radial solutions, uniqueness, compactness, asymptotic stability Global Journal of Mathematical Sciences Vol. 7 (1) 2008: pp. 53-56
半线性椭圆型方程径向解的唯一性与渐近稳定性
对于在R n (n>2), u(ρ) =0, u\'(0) =0的情况下Δu + f(u +)=0的径向解u=ur的唯一性,除了lim R→∞u(R)=0的情况外,所知较少;对于只基于函数f(t)和d的演化的情况dt f(t) t。基于f∈c1([0,∞))和ρ满足有界性条件,证明了a +f(u +)=0 (r>0), u(ρ) =0, u\'(0) =0问题的唯一性。进一步,我们证明了仅基于u\'(r)和u-φ(r)f(u)的演化的da +f(u +)=0的渐近稳定性。关键词:半线性椭圆方程,径向解,唯一性,紧性,渐近稳定性。数学学报,Vol. 7 (1), 2008: pp. 53-56
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信