Shot Or Not: Comparison of NLP Approaches for Vaccination Behaviour Detection

Aditya Joshi, Xiang Dai, Sarvnaz Karimi, R. Sparks, Cécile Paris, C. Macintyre
{"title":"Shot Or Not: Comparison of NLP Approaches for Vaccination Behaviour Detection","authors":"Aditya Joshi, Xiang Dai, Sarvnaz Karimi, R. Sparks, Cécile Paris, C. Macintyre","doi":"10.18653/v1/W18-5911","DOIUrl":null,"url":null,"abstract":"Vaccination behaviour detection deals with predicting whether or not a person received/was about to receive a vaccine. We present our submission for vaccination behaviour detection shared task at the SMM4H workshop. Our findings are based on three prevalent text classification approaches: rule-based, statistical and deep learning-based. Our final submissions are: (1) an ensemble of statistical classifiers with task-specific features derived using lexicons, language processing tools and word embeddings; and, (2) a LSTM classifier with pre-trained language models.","PeriodicalId":426981,"journal":{"name":"Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-5911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Vaccination behaviour detection deals with predicting whether or not a person received/was about to receive a vaccine. We present our submission for vaccination behaviour detection shared task at the SMM4H workshop. Our findings are based on three prevalent text classification approaches: rule-based, statistical and deep learning-based. Our final submissions are: (1) an ensemble of statistical classifiers with task-specific features derived using lexicons, language processing tools and word embeddings; and, (2) a LSTM classifier with pre-trained language models.
注射与否:疫苗接种行为检测的NLP方法比较
疫苗接种行为检测涉及预测一个人是否接受或即将接受疫苗。我们在SMM4H研讨会上提交了疫苗接种行为检测共享任务。我们的发现基于三种流行的文本分类方法:基于规则的、基于统计的和基于深度学习的。我们的最终提交是:(1)使用词汇、语言处理工具和词嵌入衍生出具有特定任务特征的统计分类器的集合;(2)使用预训练语言模型的LSTM分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信